Skip to main content

Matrix-Assisted Laser Desorption/Ionization and Nanoparticle-Based Imaging Mass Spectrometry for Small Metabolites: A Practical Protocol

  • Protocol
  • First Online:
Mass Spectrometry Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 656))

Abstract

Matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS, also referred to as mass spectrometry imaging [MSI]) enables visualization of the distribution of biomolecules with varied and vast structures in tissue sections. This emerging imaging technique was initially developed as a tool for protein imaging; however, the number of studies reporting imaging of small organic molecules has recently increased. IMS is an effective technique for the visualization of endogenous small metabolites, especially lipids, facilitated by the unique advantages of mass spectrometry-based molecular detection. Despite the promising capability of MALDI-IMS for imaging small metabolites, this technique still has several issues, especially in spatial resolution. One of the critical limitations of the spatial resolution of MALDI-IMS is the size of the organic matrix crystal and the analyte migration during the matrix application process. To overcome these problems, we reported a nanoparticle (NP)-assisted laser desorption/ionization (nano-PALDI)-based IMS, in which the matrix crystallization process is eliminated. In this chapter, a practical protocol for MALDI-IMS of lipids is outlined. In addition, as an attractive alternative to MALDI-based IMS, we also present nanoparticle-based IMS that improves spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrett, T. J., Prieto-Conaway, M. C., Kovtoun, V., Bui, H., Izgarian, N., Stafford, G. Yost, R. A. (2006). Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom, 260, 11.

    Google Scholar 

  2. Khatib-Shahidi, S., Andersson, M., Herman, J. L., Gillespie, T. A., Caprioli, R. M. (2006). Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem, 78, 6448–6456.

    Article  PubMed  CAS  Google Scholar 

  3. Stoeckli, M., Staab, D., Staufenbiel, M., Wiederhold, K. H., Signor, L. (2002). Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem, 311, 33–39.

    Article  PubMed  CAS  Google Scholar 

  4. Chaurand, P., Norris, J. L., Cornett, D. S., Mobley, J. A., Caprioli, R. M. (2006). New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res, 5, 2889–2900.

    Article  PubMed  CAS  Google Scholar 

  5. Shimma, S., Sugiura, Y., Hayasaka, T., Zaima, N., Matsumoto, M., Setou, M. (2008). Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem, 80, 875–885.

    Google Scholar 

  6. Ostrowski, S. G., Van Bell, C. T., Winograd, N., Ewing, A. G. (2004). Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science, 305, 71–73.

    Article  PubMed  CAS  Google Scholar 

  7. Monroe, E. B., Jurchen, J. C., Lee, J., Rubakhin, S. S., Sweedler, J. V. (2005). Vitamin E imaging and localization in the neuronal membrane. J Am Chem Soc, 127, 12152–12153.

    Article  PubMed  CAS  Google Scholar 

  8. Kraft, M. L., Weber, P. K., Longo, M. L., Hutcheon, I. D., Boxer, S. G. (2006). Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science, 313, 1948–1951.

    Article  PubMed  CAS  Google Scholar 

  9. Taira, S., Sugiura, Y., Moritake, S., Shimma, S., Ichiyanagi, Y., Setou, M. (2008). Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem, 80, 4761–4766.

    Article  PubMed  CAS  Google Scholar 

  10. Moritake, S., Taira, S., Sugiura, Y., Setou, M., Ichiyanagi, Y. (2009). Magnetic nanoparticle-based mass spectrometry for the detection of biomolecules in cultured cells. J Nanosci Nanotechnol, 9, 169–176.

    Google Scholar 

  11. Sugiura, Y., Konishi, Y., Zaima, N., Kajihara, S., Nakanishi, H., Taguchi, R., Setou, M. (2009). Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res, 50, 1776–1788

    Article  PubMed  CAS  Google Scholar 

  12. Hayasaka, T., Goto-Inoue, N., Sugiura, Y., Zaima, N., Nakanishi, H., Ohishi, K., Nakanishi, S., Naito, T., Taguchi, R., Setou, M. (2008). Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom, 22, 3415–3426.

    Article  PubMed  CAS  Google Scholar 

  13. Sugiura, Y., Shimma, S., Setou, M. (2006). Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry. J. Mass Spectrom Soc Jpn, 54, 4.

    Article  Google Scholar 

  14. Schwartz, S. A., Reyzer, M. L., Caprioli, R. M. (2003). Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom, 38, 699–708.

    Article  PubMed  CAS  Google Scholar 

  15. Pulfer, M., Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev, 22, 332–364.

    Article  PubMed  CAS  Google Scholar 

  16. Stubiger, G., Pittenauer, E., Allmaier, G. (2008). MALDI seamless postsource decay fragment ion analysis of sodiated and lithiated phospholipids. Anal Chem, 80, 1664–1678.

    Article  PubMed  Google Scholar 

  17. Touboul, D., Piednoel, H., Voisin, V., De La Porte, S., Brunelle, A., Halgand, F., Laprevote, O. (2004). Changes of phospholipid composition within the dystrophic muscle by matrix-assisted laser desorption/ionization mass spectrometry and mass spectrometry imaging. Eur J Mass Spectrom (Chichester, Eng), 10, 657–664.

    Article  CAS  Google Scholar 

  18. van Echten, G., Sandhoff, K. (1993). Ganglioside metabolism. enzymology, topology, and regulation. J Biol Chem, 268, 5341–5344.

    PubMed  Google Scholar 

  19. Sonnino, S., Chigorno, V. (2000). Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta, 1469, 63–77.

    Article  PubMed  CAS  Google Scholar 

  20. Sambasivarao, K., McCluer, R. H. (1964). Lipid components of gangliosides. J Lipid Res, 15, 103–108.

    PubMed  CAS  Google Scholar 

  21. Schwarz, H. P., Kostyk, I., Marmolejo, A., Sarappa, C. (1967). Long-chain bases of brain and spinal cord of rabbits. J Neurochem, 14, 91–97.

    Article  PubMed  CAS  Google Scholar 

  22. Jungalwala, F. B., Hayssen, V., Pasquini, J. M., McCluer, R. H. (1979). Separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography. J Lipid Res, 20, 579–587.

    PubMed  CAS  Google Scholar 

  23. Palestini, P., Sonnino, S., Tettamanti, G. (1991). Lack of the ganglioside molecular species containing the C20-long-chain bases in human, rat, mouse, rabbit, cat, dog, and chicken brains during prenatal life. J Neurochem, 56, 2048–2050.

    Article  PubMed  CAS  Google Scholar 

  24. Palestini, P., Masserini, M., Sonnino, S., Giuliani, A., Tettamanti, G. (1990). Changes in the ceramide composition of rat forebrain gangliosides with age. J Neurochem, 54, 230–235.

    Article  PubMed  CAS  Google Scholar 

  25. Mansson, J. E., Vanier, M. T., Svennerholm, L. (1978). Changes in the fatty acid and sphingosine composition of the major gangliosides of human brain with age. J Neurochem, 30, 273–275.

    Article  PubMed  CAS  Google Scholar 

  26. Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., Tai, T. (1993). Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies. Glycobiology, 3, 137–146.

    Article  PubMed  CAS  Google Scholar 

  27. Jackson, S. N., Wang, H. Y., Woods, A. S. (2005). Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem, 77, 4523–4527.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, Y., Allegood, J., Liu, Y., Wang, E., Cachon-Gonzalez, B., Cox, T. M., Merrill, A. H., Jr., Sullards, M. C. (2008). Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem, 80, 2780–2788.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka, K., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T. (1987). Proceedings of the 2nd Japan–China Joint Symposium on Mass spectrometry , Osaka, Japan, 185–187.

    Google Scholar 

  30. McLean, J. A., Stumpo, K. A., Russell, D. H. (2005). Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J Am Chem Soc, 127, 5304–5305.

    Article  PubMed  CAS  Google Scholar 

  31. Jackson, S. N., Ugarov, M., Egan, T., Post, J. D., Langlais, D., Albert Schultz, J., Woods, A. S. (2007). MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom, 42, 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  32. Ageta, H., Asai, S., Sugiura, Y., Goto-Inoue, N., Zaima, N., Setou, M. (2009). Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol, 42, 16–23.

    Google Scholar 

  33. Ageta, H., Asai, S., Sugiura, Y., Goto-Inoue, N., Zaima, N., Setou, M. (2009). Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol, 42, 16–23.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson, S. N., Wang, H. Y., Woods, A. S. (2005). In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom, 16, 2052–2056.

    Article  PubMed  CAS  Google Scholar 

  35. Han, X., Gross, R. W. (2001). Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem, 295, 88–100.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu, F. F., Turk, J. (2001). Structural determination of glycosphingolipids as lithiated adducts by electrospray ionization mass spectrometry using low-energy collisional-activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom, 12, 61–79.

    Article  PubMed  CAS  Google Scholar 

  37. Umemura, A., Mabe, H., Nagai, H., Sugino, F. (1992). Action of phospholipases A2 and C on free fatty acid release during complete ischemia in rat neocortex. Effect of phospholipase C inhibitor and N-methyl-D-aspartate antagonist. J Neurosurg, 76, 648–651.

    Article  PubMed  CAS  Google Scholar 

  38. Rehncrona, S., Westerberg, E., Akesson, B., Siesjo, B. K. (1982). Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia. J Neurochem, 38, 84–93.

    Article  PubMed  CAS  Google Scholar 

  39. Stoeckli, M., Staab, D., Schweitzer, A. (2006). Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom, 260, 195–202.

    Google Scholar 

  40. Goodwin, R. J., Dungworth, J. C., Cobb, S. R., Pitt, A. R. (2008). Time-dependent evolution of tissue markers by MALDI-MS imaging. Proteomics, 8, 3801–3808.

    Article  PubMed  CAS  Google Scholar 

  41. Sugiura, Y., Shimma, S., Setou, M. (2006). Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. Anal Chem, 78, 8227–8235.

    Article  PubMed  CAS  Google Scholar 

  42. Mock, K. K., Sutton, C. W., Cottrell, J. S. (1992). Sample immobilization protocols for matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom, 6, 233–238.

    Article  PubMed  CAS  Google Scholar 

  43. Astigarraga, E., Barreda-Gomez, G., Lombardero, L., Fresnedo, O., Castano, F., Giralt, M. T., Ochoa, B., Rodriguez-Puertas, R., Fernandez, J. A. (2008). Profiling and imaging of lipids on brain and liver tissue by matrix-assisted laser desorption/ionization mass spectrometry using 2-mercaptobenzothiazole as a matrix. Anal Chem, 80, 9105–9114.

    Article  PubMed  CAS  Google Scholar 

  44. Jackson, S. N., Wang, H. Y., Woods, A. S. (2007). In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom, 18, 17–26.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, H. Y., Jackson, S. N., Woods, A. S. (2007). Direct MALDI-MS analysis of cardiolipin from rat organs sections. J Am Soc Mass Spectrom, 18, 567–577.

    Article  PubMed  CAS  Google Scholar 

  46. Altelaar, A. F., Klinkert, I., Jalink, K., de Lange, R. P., Adan, R. A., Heeren, R. M., Piersma, S. R. (2006). Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem, 78, 734–742.

    Article  PubMed  CAS  Google Scholar 

  47. Cha, S., Yeung, E. S. (2007). Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem, 79, 2373–2385.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang, H., Cha, S., Yeung, E. S. (2007). Colloidal graphite-assisted laser desorption/ionization MS and MS(n) of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem, 79, 6575–6584.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. S. Taira and Dr. H. Ageta for their advice and fruitful discussion. This work was supported by the SENTAN program of the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sugiura, Y., Setou, M. (2010). Matrix-Assisted Laser Desorption/Ionization and Nanoparticle-Based Imaging Mass Spectrometry for Small Metabolites: A Practical Protocol. In: Rubakhin, S., Sweedler, J. (eds) Mass Spectrometry Imaging. Methods in Molecular Biology, vol 656. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-746-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-746-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-745-7

  • Online ISBN: 978-1-60761-746-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics