Skip to main content

Assessing Aβ Aggregation State by Atomic Force Microscopy

  • Protocol
  • First Online:
Alzheimer's Disease and Frontotemporal Dementia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 670))

Abstract

There has been a growing recognition of a wide variety of diseases commonly referred to as conformational diseases, which share the feature of specific disease-related proteins adopting nonnative conformation that promote their ordered aggregation and deposition on surfaces. Due to the nanoscale dimensions and the varied morphology of such aggregates, atomic force microscopy (AFM) has emerged as an ideal tool for distinguishing structural features of the numerous potential aggregate forms, ranging from small globular oligomers to large mature amyloid fibrils. Beyond the ability to morphologically distinguish aggregate forms, AFM also can dynamically track the aggregation process due to its unique ability to be operated not only in air (ex situ), but also in solution (in situ). This feature provides for tracking the fate of individual aggregates over time. This chapter describes the use of AFM in characterizing the aggregation of the amyloid-β peptide (Aβ), which is hypothesized to play a key role in Alzheimer’s disease (AD), a late-onset neurodegenerative conformational disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Žerovnik, E. (2002) Amyloid-fibril formation: proposed mechanisms and relevance to conformationl disease. Eur. J. Biochem. 269, 3362–71.

    Article  PubMed  Google Scholar 

  2. Chiti, F., and Dobson, C. M. (2006) Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–66.

    Article  PubMed  CAS  Google Scholar 

  3. Binnig, G., Quate, C. F., and Gerber, C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–33.

    Article  PubMed  Google Scholar 

  4. Harper, J. D., Wong, S. S., Lieber, C. M., and Lansbury, P. T., Jr. (1999) Assembly of Aβ amyloid protofibrils: an in vitro model for a possible early event in Alzheimer’s disease. Biochemistry 38, 8972–80.

    Article  PubMed  CAS  Google Scholar 

  5. Kowalewski, T., and Holtzman, D. M. (1999) In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc. Natl. Acad. Sci. U S A. 96, 3688–93.

    Article  PubMed  CAS  Google Scholar 

  6. Yip, C. M., Elton, E. A., Darabie, A. A., Morrison, M. R., and McLaurin, J. (2001) Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity. J. Mol. Biol. 311, 723–34.

    Article  PubMed  CAS  Google Scholar 

  7. Blackley, H. K., Patel, N., Davies, M. C., Roberts, C. J., Tendler, S. J., Wilkinson, M. J., and Williams, P. M. (1999) Morphological development of Aβ(1-40) amyloid fibrils. Exp. Neurol. 158, 437–43.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, H., Bhatia, R., and Lal, R. (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J. 15, 2433–44.

    Article  PubMed  CAS  Google Scholar 

  9. Blackley, H. K. L., Sanders, G. H. W., Davies, M. C., Roberts, C. J., Tendler, S. J. B., and Wilkinson, M. J. (2000) In-situ atomic force microscopy study of β-amyloid fibrillization. J. Mol. Biol. 298, 833–40.

    Article  PubMed  CAS  Google Scholar 

  10. Yang, D. S., Yip, C. M., Huang, T. H., Chakrabartty, A., and Fraser, P. E. (1999) Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Bio. Chem. 274, 32970–4.

    Article  CAS  Google Scholar 

  11. Bhatia, R., Lin, H., and Lal, R. (2000) Fresh and nonfibrillar amyloid β protein(1-42) induces rapid cellular degeneration in aged human fibroblasts: evidence for AβP-channel-mediated cellular toxicity. FASEB J. 14, 1233–43.

    PubMed  CAS  Google Scholar 

  12. Stine Jr., W. B., Dahlgren, K. N., Krafft, G. A. and LaDu, M. J. (2003) In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J. Bio. Chem. 278, 11612–22.

    Article  CAS  Google Scholar 

  13. Barrow, C. J., Yasuda, A., Kenny, P. T. M., and Zagorski, M. G. (1992) Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease: analysis of circular dichroism spectra. J. Mol. Biol. 225, 1075–93.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, Z., Zhou, C., Wang, C., Wan, L., Fang, X., and Bai, C. (2003) AFM and STM study of β-amyloid aggregation on graphite. Ultramicroscopy. 97, 73–79.

    Article  PubMed  CAS  Google Scholar 

  15. Yip, C. M., Darabie, A. A., and McLaurin, J. (2002) Aβ42-peptide assembly on lipid bilayers. J. Mol. Biol. 318, 97–107.

    Article  PubMed  CAS  Google Scholar 

  16. Yip, C. M., and McLaurin, J. (2001) Amyloid-β assembly: a critical step in fibrillogensis and membrane disruption. Biophys. J. 80, 1359–71.

    Article  PubMed  CAS  Google Scholar 

  17. Choucair, A., Chakrapani, M., Chakravarthy, B., Katsaras, J., and Johnston, L. J. (2007) Preferential accumulation of Aβ(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study. Biochim. Biophys. Acta 1768, 146–54.

    Article  PubMed  CAS  Google Scholar 

  18. Xu, S., and Ansdorf, M. F. (1994) Calibration of scanning (atomic) force microscope with gold particles. J. Microsc. 173, 199–210.

    Article  PubMed  CAS  Google Scholar 

  19. Villarrubia, J. S. (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. Natl. Inst. Stand. Technol. 102, 425.

    Article  Google Scholar 

  20. Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Rozovsky, I., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A., and Klein, W. L. (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. U S A. 95, 6448–53.

    Article  PubMed  CAS  Google Scholar 

  21. Legleiter, J., Czilli, D., Demattos, R., Gitter, B., Holtzman, D., and Kowalewski, T. (2004) Effect of different anti-Aβ antibodies on Aβ fibrillogenesis as assessed by atomic force microscopy. J. Mol. Biol. 335, 997–1006.

    Article  PubMed  CAS  Google Scholar 

  22. Rhee, S. K., Quist, A. P., and Lal, R. (1998) Amyloid β protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J. Biol. Chem. 273, 13379–82.

    Article  PubMed  CAS  Google Scholar 

  23. Lin, H., Zhu, Y. J., and Lal, R. (1999) Amyloid-β protein (1-40) forms calcium-permeable, Zn2 + -sensitive channel in reconstituted lipid vesicles. Biochemistry. 38, 11189–96.

    Article  PubMed  CAS  Google Scholar 

  24. Cai, X. D., Golde, T. E., and Younkin, S. G. (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–16.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng, I. H., Scearce-Levie, K., Legleiter, J., Palop, J. J., Gerstein, H., Bien-Ly, N., Puolivali, J., Lesne, S., Ashe, K. H., Muchowski, P. J., and Mucke, L. (2007) Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–28.

    Article  PubMed  CAS  Google Scholar 

  26. De Jonghe, C., Zehr, C., Yager, D., Prada, C. M., Younkin, S., Hendriks. L., Van Broeckhoven, C., and Eckman, C. B. (1998) Flemish and Dutch mutations in amyloid β precursor protein have different effects on amyloid β secretion. Neurobiol. Dis. 5, 281–86.

    Article  PubMed  Google Scholar 

  27. Miravalle, L., Tokuda, T., Chiarle, R., Giaccone, G., Bugiani, O., Tagliavini, F., Frangione, B., and Ghiso, J. (2000) Substitutions at codon 22 of Alzheimer’s Aβ peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J. Biol. Chem. 275, 27110–16.

    PubMed  CAS  Google Scholar 

  28. Watson, D. J., Selkoe, D. J., and Teplow, D. B. (1999) Effects of the amyloid precursor protein Glu693Gln “Dutch” mutation on the production and stability of amyloid β-protein. Biochem. J. 340, 703–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sian, A. K., Frears, E. R., El-Agnaf, O. M., Patel, B. P., Manca, M. F., Siligardi, G., Hussain, R., and Austen, B. M. (2000) Oligomerization of β-amyloid of the Alzheimer’s and the Dutch-cerebral-haemorrhage types. Biochem. J. 349, 299–308.

    Article  PubMed  CAS  Google Scholar 

  30. Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelman, K., Forsell, C., Stenh, C., Luthman, J., Teplow, D. B., Younkin, S. G., Naslund, J., and Lannfelt, L. (2001) The “Arctic” APP mutation (E693G) causes Alzheimer’s disease by enhanced Abeta protofibril formation. Nat. Neurosci. 4, 887–93.

    Article  PubMed  CAS  Google Scholar 

  31. Van Nostrand, W. E., Melchor, J. P., Cho, H. S., Greenberg, S. M., and Rebeck, G. W. (2001) Pathogenic effects of D23N Iowa mutant amyloid β − protein. J. Biol. Chem. 376, 32680–3266.

    Google Scholar 

  32. Humphris, A., Tamayo, J., and Miles, M. (2000) Active quality factor control in liquids for force spectroscopy. Langmuir 16, 7891–94.

    Article  CAS  Google Scholar 

  33. Humphris, A. D. L., Round, A. N., and Miles, M. J. (2001) Enhanced imaging of DNA via active quality factor control. Surf. Sci. 491, 468–72.

    Article  CAS  Google Scholar 

  34. Tamayo, J., Humphris, A., and Miles, M. (2000) Piconewton regime dynamic force microscopy in liquid. Appl. Phys. Lett. 77, 582–84.

    Article  CAS  Google Scholar 

  35. Tamayo, J., Humphris, A. D. L., and Miles, M. J. (2001) High-Q dynamic force microscopy in liquid and its application to living cells. Biophys. J. 81, 526–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from West Virginia University (start-up grant) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Legleiter, J. (2010). Assessing Aβ Aggregation State by Atomic Force Microscopy. In: Roberson, E. (eds) Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology, vol 670. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-744-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-744-0_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-743-3

  • Online ISBN: 978-1-60761-744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics