Skip to main content

Selecting a Mouse Model of Alzheimer’s Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 670))

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease and cause of dementia. Significant strides toward understanding and developing therapies for AD have been supported by the use of transgenic mouse models of AD. Over the last two decades, a number of mouse models have been created to recapitulate the major neuropathological hallmarks of the disease, namely amyloid plaques and neurofibrillary tangles. These mice recapitulate many, although not all, of the key features of AD, and have been widely used in AD research. At the present time, there are numerous types of transgenic mice available for the study of AD, many of which have been characterized to some extent in terms of neuronal, neuropathological, and/or behavioral abnormalities. This repository of transgenic mice offers a wealth of opportunity to investigate the cellular mechanisms underlying AD, and the choice of mouse model for research should be guided by the specific questions to be answered. We provide here some considerations for selecting a mouse model of AD best suited to particular lines of investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walsh, D. M., and Selkoe, D. J. (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44, 181–193.

    Article  PubMed  CAS  Google Scholar 

  2. Chin, J., Roberson, E. D., and Mucke, L. (2008) in “Learning and Memory: A Comprehensive Reference” (Byrne, J. H., ed.), pp. 245–293, Elsevier, London.

    Chapter  Google Scholar 

  3. Glenner, G. G., and Wong, C. W. (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  PubMed  CAS  Google Scholar 

  4. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Amyloid plaque core protein in Alzheimer’s disease and Down’s syndrome. Proc. Natl. Acad. Sci. U S A 82, 4245–4249.

    Article  PubMed  CAS  Google Scholar 

  5. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer’s disease: The amyloid cascade hypothesis. Science 256, 184–185.

    Article  PubMed  CAS  Google Scholar 

  6. Tanzi, R., and Bertram, L. (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell 120, 545–555.

    Article  PubMed  CAS  Google Scholar 

  7. Chartier-Harlin, M. -C., Crawford, F., Houlden, H., Warren, A., Hughes, D., Fidani, L., Goate, A., Rossor, M., Roques, P., Hardy, J., and Mullan, M. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

    Article  PubMed  CAS  Google Scholar 

  8. Goate, A., Chartier-Harlin, M. -C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.

    Article  PubMed  CAS  Google Scholar 

  9. Newman, M., Musgrave, I. F., and Lardelli, M. (2007) Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim. Biophys. Acta 1772, 285–297.

    Article  PubMed  CAS  Google Scholar 

  10. Ballatore, C., Lee, V. M., and Trojanowski, J. Q. (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672.

    Article  PubMed  CAS  Google Scholar 

  11. Giannakopoulos, P., Gold, G., Kovari, E., von Gunten, A., Imhof, A., Bouras, C., and Hof, P. R. (2007) Assessing the cognitive impact of Alzheimer disease pathology and vascular burden in the aging brain: The Geneva experience. Acta Neuropathol. 113, 1–12.

    Article  PubMed  Google Scholar 

  12. Lee, V. M., Goedert, M., and Trojanowski, J. Q. (2001) Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159.

    Article  PubMed  CAS  Google Scholar 

  13. Roberson, E. D. (2006) Frontotemporal dementia. Curr. Neurol. Neurosci. Rep. 6, 481–489.

    Article  PubMed  Google Scholar 

  14. Bertram, L., and Tanzi, R. E. (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9, 768–778.

    Article  PubMed  CAS  Google Scholar 

  15. Radde, R., Duma, C., Goedert, M., and Jucker, M. (2008) The value of incomplete mouse models of Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 35 Suppl 1, S70–S74.

    Article  PubMed  CAS  Google Scholar 

  16. Jankowsky, J. L., Younkin, L. H., Gonzales, V., Fadale, D. J., Slunt, H. H., Lester, H. A., Younkin, S. G., and Borchelt, D. R. (2007) Rodent Aβ modulates the solubility and distribution of amyloid deposits in transgenic mice. J. Biol. Chem. 282, 22707–22720.

    Article  PubMed  CAS  Google Scholar 

  17. Games, D., Buttini, M., Kobayashi, D., Schenk, D., and Seubert, P. (2006) Mice as models: transgenic approaches and Alzheimer’s disease. J. Alzheimers Dis. 9, 133–149.

    PubMed  CAS  Google Scholar 

  18. Duyckaerts, C., Potier, M. C., and Delatour, B. (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 115, 5–38.

    Article  PubMed  Google Scholar 

  19. Turner, P. R., O’Connor, K., Tate, W. P., and Abraham, W. C. (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol. 70, 1–32.

    Article  PubMed  CAS  Google Scholar 

  20. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  21. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. S., and Cole, G. (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  22. Lesné, S., Ming Teng, K., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., and Ashe, K. H. (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440, 352–357.

    Article  PubMed  Google Scholar 

  23. Mucke, L., Masliah, E., Yu, G. -Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., and McConlogue, L. (2000) High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058.

    PubMed  CAS  Google Scholar 

  24. Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., Yoo, J., Ho, K. O., Yu, G. -Q., Kreitzer, A., Finkbeiner, S., Noebels, J. L., and Mucke, L. (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711.

    Article  PubMed  CAS  Google Scholar 

  25. Palop, J. J., and Mucke, L. (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch. Neurol. 66, E1–E6.

    Google Scholar 

  26. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., Ledermann, B., Bürki, K., Frey, P., Paganetti, P. A., Waridel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U S A 94, 13287–13292.

    Article  PubMed  CAS  Google Scholar 

  27. Calhoun, M. E., Wiederhold, K. H., Abramowski, D., Phinney, A. L., Probst, A., Sturchler-Pierrat, C., Staufenbiel, M., Sommer, B., and Jucker, M. (1998) Neuron loss in APP transgenic mice. Nature 395, 755–756.

    Article  PubMed  CAS  Google Scholar 

  28. Chishti, M. A., Yang, D. S., Janus, C., Phinney, A. L., Horne, P., Pearson, J., Strome, R., Zuker, N., Loukides, J., French, J., Turner, S., Lozza, G., Grilli, M., Kunicki, S., Morissette, C., Paquette, J., Gervais, F., Bergeron, C., Fraser, P. E., Carlson, G. A., George-Hyslop, P. S., and Westaway, D. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276, 21562–21570.

    Article  PubMed  CAS  Google Scholar 

  29. Rockenstein, E., Mallory, M., Mante, M., Sisk, A., and Masliah, E. (2001) Early formation of mature amyloid-β protein deposits in a mutant APP transgenic model depends on levels of Aβ1-42. J. Neurosci. Res. 66, 573–582.

    Article  PubMed  CAS  Google Scholar 

  30. Herzig, M. C., Winkler, D. T., Burgermeister, P., Pfeifer, M., Kohler, E., Schmidt, S. D., Danner, S., Abramowski, D., Sturchler-Pierrat, C., Burki, K., Van Duinen, S. G., Maat-Schieman, M. L., Staufenbiel, M., Mathews, P. M., and Jucker, M. (2004) Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat. Neurosci. 7, 954–960.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng, I., Palop, J., Esposito, L., Bien-Ly, N., Yan, F., and Mucke, L. (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat. Med. 10, 1190–1192.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng, I., Scearce-Levie, K., Legleiter, J., Palop, J., Gerstein, H., Bien-Ly, N., Puoliväli, J., Lesné, S., Ashe, K., Muchowski, P., and Mucke, L. (2007) Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282, 23818–23828.

    Article  PubMed  CAS  Google Scholar 

  33. Lord, A., Kalimo, H., Eckman, C., Zhang, X. -Q., Lannfelt, L., and Nilsson, L. N. G. (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Aβ aggregation and senile plaque formation in transgenic mice. Neurobiol. Aging 27, 67–77.

    Article  PubMed  CAS  Google Scholar 

  34. Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C. M., Perez-Tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M. N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., and Younkin, S. (1996) Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  35. Holcomb, L., Gordon, M. N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O’Campo, K., Hardy, J., Prada, C. M., Eckman, C., Younkin, S., Hsiao, K., and Duff, K. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.

    Article  PubMed  CAS  Google Scholar 

  36. Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., and Borchelt, D. R. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: Evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159–170.

    Article  PubMed  CAS  Google Scholar 

  37. Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., Guillozet-Bongaarts, A., Ohno, M., Disterhoft, J., Van Eldik, L., Berry, R., and Vassar, R. (2006) Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140.

    Article  PubMed  CAS  Google Scholar 

  38. Braak, H., and Braak, E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259.

    Article  PubMed  CAS  Google Scholar 

  39. Kwok, J. B., Teber, E. T., Loy, C., Hallupp, M., Nicholson, G., Mellick, G. D., Buchanan, D. D., Silburn, P. A., and Schofield, P. R. (2004) Tau haplotypes regulate transcription and are associated with Parkinson’s disease. Ann. Neurol. 55, 329–334.

    Article  PubMed  CAS  Google Scholar 

  40. Myers, A. J., Kaleem, M., Marlowe, L., Pittman, A. M., Lees, A. J., Fung, H. C., Duckworth, J., Leung, D., Gibson, A., Morris, C. M., de Silva, R., and Hardy, J. (2005) The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum. Mol. Genet. 14, 2399–2404.

    Article  PubMed  CAS  Google Scholar 

  41. Myers, A. J., Pittman, A. M., Zhao, A. S., Rohrer, K., Kaleem, M., Marlowe, L., Lees, A., Leung, D., McKeith, I. G., Perry, R. H., Morris, C. M., Trojanowski, J. Q., Clark, C., Karlawish, J., Arnold, S., Forman, M. S., Van Deerlin, V., de Silva, R., and Hardy, J. (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 25, 561–570.

    Article  PubMed  CAS  Google Scholar 

  42. Roberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., Gerstein, H., Yu, G.-Q., and Mucke, L. (2007) Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754.

    Article  PubMed  CAS  Google Scholar 

  43. Small, S. A., and Duff, K. (2008) Linking Abeta and tau in late-onset Alzheimer’s disease: A dual pathway hypothesis. Neuron 60, 534–542.

    Article  PubMed  CAS  Google Scholar 

  44. Götz, J., Deters, N., Doldissen, A., Bokhari, L., Ke, Y., Wiesner, A., Schonrock, N., and Ittner, L. M. (2007) A decade of tau transgenic animal models and beyond. Brain Pathol. 17, 91–103.

    Article  PubMed  Google Scholar 

  45. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W. L., Yen, S. H., Dickson, D. W., Davies, P., and Hutton, M. (2000) Neurofibrillary tangles, amyotrophy and ­progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25, 402–405.

    Article  PubMed  CAS  Google Scholar 

  46. SantaCruz, K., Lewis, J., Spires, T., Paulson, J., Kotilinek, L., Ingelsson, M., Guimaraes, A., DeTure, M., Ramsden, M., McGowan, E., Forster, C., Yue, M., Orne, J., Janus, C., Mariash, A., Kuskowski, M., Hyman, B., Hutton, M., and Ashe, K. H. (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309, 476–481.

    Article  PubMed  CAS  Google Scholar 

  47. Andorfer, C., Kress, Y., Espinoza, M., de Silva, R., Tucker, K. L., Barde, Y. -A., Duff, K., and Davies, P. (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J. Neurochem. 86, 582–590.

    Article  PubMed  CAS  Google Scholar 

  48. Duff, K., Knight, H., Refolo, L. M., Sanders, S., Yu, X., Picciano, M., Malester, B., Hutton, M., Adamson, J., Goedert, M., Burki, K., and Davies, P. (2000) Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol. Dis. 7, 87–98.

    Article  PubMed  CAS  Google Scholar 

  49. Lewis, J., Dickson, D. W., Lin, W. L., Chisholm, L., Corral, A., Jones, G., Yen, S. H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., and McGowan, E. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293, 1487–1491.

    Article  PubMed  CAS  Google Scholar 

  50. Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed, R., Metherate, R., Mattson, M. P., Akbari, Y., and LaFerla, F. M. (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421.

    Article  PubMed  CAS  Google Scholar 

  51. Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., and Laferla, F. M. (2005) Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45, 675–688.

    Article  PubMed  CAS  Google Scholar 

  52. Stevens, J. C., Banks, G. T., Festing, M. F., and Fisher, E. M. (2007) Quiet mutations in inbred strains of mice. Trends Mol. Med. 13, 512–519.

    Article  PubMed  CAS  Google Scholar 

  53. Holmes, A., Wrenn, C. C., Harris, A. P., Thayer, K. E., and Crawley, J. N. (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav. 1, 55–69.

    Article  PubMed  CAS  Google Scholar 

  54. Crawley, J. N. (2008) Behavioral phenotyping strategies for mutant mice. Neuron 57, 809–818.

    Article  PubMed  CAS  Google Scholar 

  55. Linder, C. C. (2006) Genetic variables that influence phenotype. ILAR J. 47, 132–140.

    Article  PubMed  CAS  Google Scholar 

  56. Crawley, J. N. (2008) “What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice”, John Wiley & Sons Inc., Hoboken, NJ.

    Google Scholar 

  57. Dodart, J. C., and May, P. (2005) Overview on rodent models of Alzheimer’s disease. Curr. Protoc. Neurosci. Chapter 9, Unit 922.

  58. Kobayashi, D. T., and Chen, K. S. (2005) Behavioral phenotypes of amyloid-based genetically modified mouse models of Alzheimer’s Disease. Genes Brain Behav. 4, 173–196.

    Article  PubMed  CAS  Google Scholar 

  59. McGowan, E., Eriksen, J., and Hutton, M. (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet. 22, 281–289.

    Article  PubMed  CAS  Google Scholar 

  60. Götz, J., and Ittner, L. M. (2008) Animal models of Alzheimer’s disease and frontotemporal dementia. Nat. Rev. Neurosci. 9, 532–544.

    Article  PubMed  Google Scholar 

  61. Howlett, D. R., and Richardson, J. C. (2009) The pathology of APP transgenic mice: a model of Alzheimer’s disease or simply overexpression of APP? Histol. Histopathol. 24, 83–100.

    PubMed  CAS  Google Scholar 

  62. LaFerla, F. M., and Oddo, S. (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol. Med. 11, 170–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Chin, J. (2010). Selecting a Mouse Model of Alzheimer’s Disease. In: Roberson, E. (eds) Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology, vol 670. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-744-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-744-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-743-3

  • Online ISBN: 978-1-60761-744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics