Skip to main content

In Vivo and In Vitro Tools to Identify and Study Transcriptional Regulation of USF-1 Target Genes

  • Protocol
  • First Online:
Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 647))

Abstract

In response to environmental stress, cells trigger a number of molecular mechanisms to control their survival and growth. These include changes in gene expression with corresponding Post-translational modifications to critical transcriptional-control proteins. Transcription is a highly-regulated process that is impacted by a large number of ubiquitous and specific factors. In order to determine how gene expression is regulated in response to environmental cues, it is necessary to correlate modifications to specific transcription proteins with an accurate assessment of the transcriptional response. This chapter details quantitative Real Time PCR (qPCR) and Luciferase assay protocols to illustrate, both in vivo and in vitro, the role of the USF-1 transcription factor in the UV-dependant regulation of pigmentation genes (POMC and MC1R). The procedures have been optimized for the USF-1 transcription factor and the regulation of specific target genes in response to physiological UV doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lam FH, Steger DJ, O’Shea EK (2008) Chromatin decouples promoter threshold from dynamic range. Nature 453:246–250

    Article  PubMed  CAS  Google Scholar 

  2. Urnov FD, Wolffe AP (2001) Chromatin remodeling and transcriptional activation: the cast (in order of appearance). Oncogene 20:2991–3006

    Article  PubMed  CAS  Google Scholar 

  3. Corre S, Galibert MD (2005) Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res 18:337–348

    Article  PubMed  CAS  Google Scholar 

  4. Ferre-D’Amare AR, Pognonec P, Roeder RG, Burley SK (1994) Structure and function of the b/HLH/Z domain of USF. EMBO J 13:180–189

    PubMed  Google Scholar 

  5. Bungert J, Kober I, During F, Seifart KH (1992) Transcription factor eUSF is an essential component of isolated transcription complexes on the duck histone H5 gene and it mediates the interaction of TFIID with a TATA-deficient promoter. J Mol Biol 223:885–898

    Article  PubMed  CAS  Google Scholar 

  6. Chiang CM, Roeder RG (1995) Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267:531–536

    Article  PubMed  CAS  Google Scholar 

  7. Meisterernst M, Horikoshi M, Roeder RG (1990) Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc Natl Acad Sci U S A 87:9153–9157

    Article  PubMed  CAS  Google Scholar 

  8. Chang LA, Smith T, Pognonec P, Roeder RG, Murialdo H (1992) Identification of USF as the ubiquitous murine factor that binds to and stimulates transcription from the immunoglobulin lambda 2-chain promoter. Nucleic Acids Res 20:287–293

    Article  PubMed  CAS  Google Scholar 

  9. Carter RS, Ordentlich P, Kadesch T (1997) Selective utilization of basic helix-loop-helix-leucine zipper proteins at the immunoglobulin heavy-chain enhancer. Mol Cell Biol 17:18–23

    PubMed  CAS  Google Scholar 

  10. Trepicchio WL, Krontiris TG (1993) IGH minisatellite suppression of USF-binding-site- and E mu-mediated transcriptional activation of the adenovirus major late promoter. Nucleic Acids Res 21:977–985

    Article  PubMed  CAS  Google Scholar 

  11. Peter M, Herskowitz I (1994) Joining the complex: cyclin-dependent kinase inhi­bitory proteins and the cell cycle. Cell 79:181–184

    Article  PubMed  CAS  Google Scholar 

  12. North S, Espanel X, Bantignies F et al (1999) Regulation of cdc2 gene expression by the upstream stimulatory factors (USFs). Oncogene 18:1945–1955

    Article  PubMed  CAS  Google Scholar 

  13. Cogswell JP, Godlevski MM, Bonham M, Bisi J, Babiss L (1995) Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol Cell Biol 15:2782–2790

    PubMed  CAS  Google Scholar 

  14. Jung HS, Kim KS, Chung YJ et al (2007) USF inhibits cell proliferation through delay in G2/M phase in FRTL-5 cells. Endocr J 54:275–285

    Article  PubMed  CAS  Google Scholar 

  15. van Deursen D, Jansen H, Verhoeven AJ (2008) Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia 51:2078–2087

    Article  PubMed  CAS  Google Scholar 

  16. Nowak M, Helleboid-Chapman A, Jakel H et al (2008) Glucose regulates the expression of the apolipoprotein A5 gene. J Mol Biol 380:789–798

    Article  PubMed  CAS  Google Scholar 

  17. Corre S, Primot A, Sviderskaya E et al (2004) UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38 activated upstream stimulating factor-1 (USF-1). J Biol Chem 279:51226–51233

    Article  PubMed  CAS  Google Scholar 

  18. Galibert MD, Carreira S, Goding CR (2001) The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced Tyrosinase expression. EMBO J 20:5022–5031

    Article  PubMed  CAS  Google Scholar 

  19. Corre S, Mekideche K, Adamski H, Mosser J, Watier E, Galibert MD (2006) In vivo and ex vivo UV-induced analysis of pigmentation gene expressions. J Invest Dermatol 126:916–918

    Article  PubMed  CAS  Google Scholar 

  20. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  21. Colosimo A, Goncz KK, Holmes AR et al (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29:314–318, 320–2, 324 passim

    PubMed  CAS  Google Scholar 

  22. de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported over the years by the LNCC – “Comités Départementaux du Grand Ouest” and the ARC cancer care fundings. We would also like to thank the CNRS, University of Rennes and Brittany Region for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Dominique Galibert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Galibert, MD., Corre, S. (2010). In Vivo and In Vitro Tools to Identify and Study Transcriptional Regulation of USF-1 Target Genes. In: Higgins, P. (eds) Transcription Factors. Methods in Molecular Biology, vol 647. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-738-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-738-9_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-737-2

  • Online ISBN: 978-1-60761-738-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics