Skip to main content

Producing a Recombinant Flavin-Containing Monooxygenase from Coffea arabica in Escherichia coli for Screening of Potential Natural Substrates

  • Protocol
  • First Online:
Plant Secondary Metabolism Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 643))

  • 2569 Accesses

Abstract

Only few biological functions have been related with flavin-containing monooxygenases (FMOs) in plants, such as specific roles in auxin biosynthesis, pathogen defense, and metabolism of glucosinolates. Biochemical characterization using recombinant proteins is a promising approach to determine the precise specificity of plant FMOs for potential natural substrates. FMOs may be very difficult to express in a soluble form due to their highly hydrophobic nature and this can be improved by fusing them to solubility-enhancing proteins, such as maltose-binding protein (MBP) and N-utilization substance A (NusA). Here we describe the expression of a recombinant FMO from Coffea arabica as a maltose-binding protein fusion in Escherichia coli and its purification by affinity chromatography, producing a ready-to-use protein for enzymatic activity assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cashman, J. R., and Zhang, J. (2006) Human flavin-containing monooxygenases. Annu. Rev. Pharmacol. 46, 65–100.

    Article  CAS  Google Scholar 

  2. Naumann, C., Hartmann, T., and Ober, D. (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc. Natl Acad. Sci. U.S.A. 99, 6085–6090.

    Article  PubMed  CAS  Google Scholar 

  3. Zhao, Y. D., Christensen, S. K., Fankhauser, C., Cashman, J. R., Cohen, J. D., Weigel, D., and Chory, J. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306–309.

    Article  PubMed  CAS  Google Scholar 

  4. Koch, M., Vorwerk, S., Masur, C., Sharifi-Sirchi, G., Olivieri, N., and Schlaich, N. L. (2006) A role for a flavin-containing mono-oxygenase in resistance against microbial pathogens in Arabidopsis. Plant J. 47, 629–639.

    Article  PubMed  CAS  Google Scholar 

  5. Hansen, B. G., Kliebenstein, D. J., and Halkier, B. A. (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50, 902–910.

    Article  PubMed  CAS  Google Scholar 

  6. Esposito, D., and Chatterjee, D. K. (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotech. 17, 353–358.

    Article  PubMed  CAS  Google Scholar 

  7. Graslund, S., Nordlund, P., Weigelt, J., Hallberg, B. M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., Dhe-Paganon, S., Park, H. W., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S. H., Rao, Z., Shi, Y., Terwilliger, T. C., Kim, C. Y., Hung, L. W., Waldo, G. S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J. L., Stevens, R. C., Lesley, S. A., Wilson, I. A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M. I., Eschenfeldt, W. H., Kim, Y., Stols, L., Wu, R., Zhou, M., Burley, S. K., Emtage, J. S., Sauder, J. M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S. C., Bonanno, J. B., Fiser, A., Swaminathan, S., Studier, F. W., Chance, M. R., Sali, A., Acton, T. B., Xiao, R., Zhao, L., Ma, L. C., Hunt, J. F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C. K., Wang, D., Wang, H., Jiang, M., Montelione, G. T., Stuart, D. I., Owens, R. J., Daenke, S., Schütz, A., Heinemann, U., Yokoyama, S., Büssow, K., and Gunsalus, K. C. (2008) Protein production and purification. Nat. Meth. 5, 135–146.

    Article  Google Scholar 

  8. Nallamsetty, S., and Waugh, D. S. (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expres. Purif. 45, 175–182.

    Article  CAS  Google Scholar 

  9. Vieira, L. G. E., Andrade, A. C., Colombo, C. A., Moraes, A. H. A., Metha, A., de Oliveira, A. C., Labate, C. A., Marino, C. L., Monteiro-Vitorello, C. B., Monte, D. C., Giglioti, E., Kimura, E. T., Romano, E., Kuramae, E. E., Lemos, E. G. M., de Almeida, E. R. P., Jorge, E. C., Albuquerque, E. V. S., da Silva, F. R., Vinecky, F., Sawazaki, H. E., Dorry, H. F. A., Carrer, H., Nacif Abreu, I., Batista, J. A. N., Teixeira, J. B., Kitajima, J. P., Xavier, K. G., de Lima, L. M., de Camargo, L. E. A., Pereira, L. F. P., Coutinho, L. L., Lemos, M. V. F., Romano, M. R., Machado, M. A., Costa, M. M. C., de Sá, M. F. G., Goldman, M. H. S., Ferro, M. I. T., Tinoco, M. L. P., Oliveira, M. C., Van Sluys, M-A., Shimizu, M. M., Maluf, M. P., da Eira, M. T. S., Filho, O. G., Arruda, P., Mazzafera, P., Mariani, P. D. S. C., de Oliveira, R. L.B.C., Harakava, R., Balbao, S. F., Tsai, S. M., di Mauro, S. M. Z., Santos, S. N., Siqueira, W. J., Costa, G. G. L., Formighieri, E. F., Carazzolle, M. F., and Pereira, G. A. G. (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz. J. Plant Phys. 18, 95–108.

    Article  CAS  Google Scholar 

  10. Exposito-Rodriguez, M., Borges, A. A., Borges-Perez, A., Hernandez, M., and Perez, J. A. (2007) Cloning and biochemical characterization of ToFZY, a tomato gene encoding a flavin monooxygenase involved in a tryptophan-dependent auxin biosynthesis pathway. J. Plant Growth Regul. 26, 329–340.

    Article  CAS  Google Scholar 

  11. Cashman, J. R. (2005) Some distinctions between flavin-containing and cytochrome P450 monooxygenases. Biochem. Bioph. Res. Comm. 338, 599–604.

    Article  CAS  Google Scholar 

  12. The QIAexpressionist (2003) A handbook for high-level expression and purification of 6xHis-tagged proteins. QIAGEN, Venlo, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cesarino, I., Mazzafera, P. (2010). Producing a Recombinant Flavin-Containing Monooxygenase from Coffea arabica in Escherichia coli for Screening of Potential Natural Substrates. In: Fett-Neto, A. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 643. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-723-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-723-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-722-8

  • Online ISBN: 978-1-60761-723-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics