Skip to main content

Fusion with Fluorescent Proteins for Subcellular Localization of Enzymes Involved in Plant Alkaloid Biosynthesis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 643))

Abstract

To establish the role in alkaloid metabolism of candidate genes identified in silico or by Omics approaches, it may be essential to determine the subcellular localization of the encoded proteins. The fusion with fluorescent proteins (FP) may now be used as a quite effective and reliable tool to investigate this question. The methodology involves the choice of the FP, the design and production of the appropriate FP fusions, and the use of a transient or stable transformation protocol applied to a homologous or heterologous plant system. This chapter describes the application of this methodology to an enzyme involved in indole alkaloid biosynthesis, with general considerations on the development of the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Facchini, P. J. (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 52, 29–66.

    Article  PubMed  CAS  Google Scholar 

  2. Ziegler, J., and Facchini, P. J. (2008) Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant. Biol. 59, 735–769.

    Article  PubMed  CAS  Google Scholar 

  3. Sottomayor, M., Lopes Cardoso, I., Pereira, L. G., and Ros Barceló, A. (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem. Rev. 3, 159–171.

    Article  CAS  Google Scholar 

  4. Bird, D. A., and Facchini, P. J. (2001) Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta 213, 888–897.

    Article  PubMed  CAS  Google Scholar 

  5. Goossens, A., and Rischer, H. (2007) Implementation of functional genomics for gene discovery in alkaloid producing plants. Phytochem. Rev. 6, 35–49.

    Article  CAS  Google Scholar 

  6. Costa, M. M. R., Hilliou, F., Duarte, P., Pereira, L. G., Almeida, I., Leech, M., Memelink, J., Barcelo, A. R., and Sottomayor, M. (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant. Physiol. 146, 403–417.

    CAS  Google Scholar 

  7. Chiu, W. L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330.

    Article  PubMed  CAS  Google Scholar 

  8. Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M., and Kobayashi, H. (1999) Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant J. 18, 455–463.

    Article  PubMed  CAS  Google Scholar 

  9. Held, M. A., Boulaflous, A., and Brandizzi, F. (2008) Advances in fluorescent protein-based imaging for the analysis of plant endomembranes. Plant Physiol. 147, 1469–1481.

    Article  PubMed  CAS  Google Scholar 

  10. Samalova, M., Fricker, M., and Moore, I. (2008) Quantitative and qualitative analysis of plant membrane traffic using fluorescent proteins. Methods Cell Biol. 85, 353–380.

    Article  PubMed  CAS  Google Scholar 

  11. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.

    Article  PubMed  CAS  Google Scholar 

  12. Stewart C.N., Jr. (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep. 20, 376–382.

    Article  PubMed  CAS  Google Scholar 

  13. Stewart, C. N., Jr. (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol. 24, 155–162.

    Article  PubMed  CAS  Google Scholar 

  14. Hunter, P. R., Craddock, C. P., Di Benedetto, S., Roberts, L. M., and Frigerio, L. (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 145, 1371–1382.

    Article  CAS  Google Scholar 

  15. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA. 94, 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  16. Siemering, K. R., Golbik, R., Sever, R., and Haseloff, J. (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6, 1653–1663.

    Article  PubMed  CAS  Google Scholar 

  17. Haas, J., Park, E. C., and Seed, B. (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6, 315–324.

    Article  PubMed  CAS  Google Scholar 

  18. Tamura, K., Shimada, T., Ono, E., Tanaka, Y., Nagatani, A., Higashi, S., Watanabe, M., Nishimura, M., and Hara-Nishimura, I. (2003) Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 35, 545–555.

    Article  PubMed  CAS  Google Scholar 

  19. Di Sansebastiano, G. P., Paris, N., Marc-Martin, S., and Neuhaus, J. M. (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 15, 449–457.

    Article  PubMed  Google Scholar 

  20. Di Sansebastiano, G. P., Paris, N., Marc-Martin, S., and Neuhaus, J. M. (2001) Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles. Plant Physiol. 126, 78–86.

    Article  PubMed  Google Scholar 

  21. Di Sansebastiano, G. P., Renna, L., Gigante, M., De Caroli, M., Piro, G., and Dalessandro, G. (2007) Green fluorescent protein reveals variability in vacuoles of three plant species. Biol. Plant. 51, 49–55.

    Article  Google Scholar 

  22. Sohn, E. J., Kim, E. S., Zhao, M., Kim, S. J., Kim, H., Kim, Y. W., Lee, Y. J., Hillmer, S., Sohn, U., Jiang, L., and Hwang, I. (2003) Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins. Plant Cell 15, 1057–1070.

    Article  PubMed  CAS  Google Scholar 

  23. Flückiger, R., De Caroli, M., Piro, G., Dalessandro, G., Neuhaus, J. M., and Di Sansebastiano, G. P. (2003) Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins. J. Exp. Bot. 54, 1577–1584.

    Article  PubMed  Google Scholar 

  24. Kuijt, S. J. H., Lamers, G. E. M., Rueb, S., Scarpella, E., Ouwerkerk, P. B. F., Spaink, H. P., and Meijer, A. H. (2004) Different subcellular localization and trafficking properties of KNOX class 1 homeodomain proteins from rice. Plant Mol. Biol. 55, 781–796.

    PubMed  CAS  Google Scholar 

  25. Bilang, R., Iida, S., Peterhans, A., Potrykus, I., and Paszkowski, J. (1991) The 3'-terminal region of the hygromycin-B resistance gene is important for its activty in Escherichia coli and Nicotiana tabacum. Gene 100, 247–250.

    Article  PubMed  CAS  Google Scholar 

  26. Pasquali, G., Goddijn, O. J. M., de Waal, A., Verpoorte, R., Schilperoort, R. A., Hoge, J. H.C., and Memelink, J. (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol. Biol. 18, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  27. Linsmaier, E. M., and Skoog, F. (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18, 100–127.

    Article  CAS  Google Scholar 

  28. Finer, J. J., Vain, P., Jones, M. W., and McMullen, M. D. (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11, 323–328.

    Article  CAS  Google Scholar 

  29. Axelos, M., Curie, C., Mazzolini, L., Bardet, C., and Lescure, B. (1992) A protocol for tansient gene expression in Arabidopsis thaliana protoplasts isolated from cell-suspension cultures. Plant Physiol. Biochem. 30, 123–128.

    CAS  Google Scholar 

  30. van der Fits, L., and Memelink, J. (1997) Comparison of the activities of CaMV 35S and FMV 34S promoter derivatives in Catharanthus roseus cells transiently and stably transformed by particle bombardment. Plant Mol. Biol. 33, 943–946.

    Article  PubMed  Google Scholar 

  31. Schirawski, J., Planchais, S., and Haenni, A. L. (2000) An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method. J. Virol. Methods 86, 85–94.

    Article  PubMed  CAS  Google Scholar 

  32. Batoko, H., Zheng, H. Q., Hawes, C., and Moore, I. (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal Golgi movement in plants. Plant Cell 12, 2201–2217.

    PubMed  CAS  Google Scholar 

  33. Cláudia Pereira (2008) Master Thesis in Biology, Department of Botany, Faculty of Sciences, University of Porto.

    Google Scholar 

Download references

Acknowledgements

This work was supported by: (i) Programa Operacional Ciência e Inovação (POCI 2010) financed by European Union and Fundação para a Ciência e Tecnologia (FCT) from the Portuguese Government; (ii) the FCT grants POCTI/BIO/38369/2001 and SFRH/BPD/20669/2004; (iii) Scientific Mecenate award from Grupo Jerónimo Martins SA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Duarte, P., Memelink, J., Sottomayor, M. (2010). Fusion with Fluorescent Proteins for Subcellular Localization of Enzymes Involved in Plant Alkaloid Biosynthesis. In: Fett-Neto, A. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 643. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-723-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-723-5_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-722-8

  • Online ISBN: 978-1-60761-723-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics