Skip to main content

Introduction of the Early Pathway to Taxol Biosynthesis in Yeast by Means of Biosynthetic Gene Cluster Construction Using SOE-PCR and Homologous Recombination

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 643))

Abstract

Metabolic engineering of plant natural product pathways in heterologous systems requires the highly concerted action of several biosynthetic genes. Besides the functional heterologous expression of the genes encoding the natural product biosynthetic pathway, often additional extensive modifications in the host primary metabolism are also needed, in order to obtain efficient supply of the required biosynthetic building blocks to support the engineered natural product biosynthesis. Selection markers in heterologous expression systems, like baker’s yeast (Saccharomyces cerevisiae), are often limited and the chromosomal insertion prevents later modifications of engineered pathway, e.g. exchange of gene promoters, or the introduction of additional genetic regulatory elements in a timely manner. Thus the construction of biosynthetic gene clusters on episomal expression vectors seems a logical solution for this dilemma. Although manipulation of long DNA fragments still represents a challenge, by using PCR and in vitro homologous recombination, we assembled a biosynthetic gene cluster for the concerted heterologous expression of three important genes for the metabolic engineering of taxoid biosynthesis in yeast.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wink, M. (1999) Plant secondary metabolites: biochemistry, function and biotechnology, in Biochemistry of Plant Secondary Metabolism, Wink, M., ed., CRC Press, Boca Raton, pp. 1–16.

    Google Scholar 

  2. Chang, M. C. Y., and Keasling, J. D. (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2, 674–681.

    Article  PubMed  CAS  Google Scholar 

  3. Ketchum, R. E. B., Gibson, D. M., Croteau, R. B., and Shuler, M. L. (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol. Bioeng. 62, 97–105.

    Article  PubMed  CAS  Google Scholar 

  4. Kumar, S., and Srivastava, S. (2005) Establishment of artemisinin combination therapy as first line treatment for combating malaria: Artemisia annua cultivation in India needed for providing sustainable supply chain of artemisinin Curr. Sci. India 89, 1097–1102.

    CAS  Google Scholar 

  5. Rao, K. V. (1995) A new large-scale process for taxol and related taxanes from Taxus brevifolia. Pharm. Res. 10, 521–524.

    Article  Google Scholar 

  6. Roth, R. J., and Acton, N. (1989) A simple conversion of artemisinic acid into artemisinin. J. Nat. Prod. 52, 1183–1185.

    Article  PubMed  CAS  Google Scholar 

  7. Dejong, J. M., Liu, Y., Bollon, A. P., Long, R. M., Jennewein, S., Williams, D., and Croteau, R. B. (2005) Genetic engineering of Taxol biosynthetic genes in Saccharomyces cerevsiae. Biotechnol. Bioeng. 93, 212–224.

    Article  Google Scholar 

  8. Engels, B., Dahm, P., and Jennewein, S. (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol production. Metab. Eng. 10, 201–206.

    Article  PubMed  CAS  Google Scholar 

  9. Mertz, J. E., and Davis, R. W. (1972) Cleavage of DNA by R1 restriction endonuclease generates cohesive ends. P. Nat. Acad. Sci. U.S.A. 69, 3370–3374.

    Article  CAS  Google Scholar 

  10. Horton, R. M., Hunt, M. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, G. Q., Choi, I., Ramachandran, B., and Gouaux, E. (1994) Total gene synthesis: novel single-step and convergent strategies applied to the construction of a 779 base pair bacteriorhodopsin gene. J. Am. Chem. Soc. 116, 8799–8800.

    Article  CAS  Google Scholar 

  12. Stemmer, W. P. C., Crameri, A., Ha, K. D., Brennan, T. M., and Heyneker, H. L. (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53.

    Article  PubMed  CAS  Google Scholar 

  13. Itaya, M., Fujita, K., Kuroki, A., and Tsuge, K. (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nature Methods 5, 41–43.

    Article  PubMed  CAS  Google Scholar 

  14. Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova, E. A., Baden-Tillson, H., Zaveri, J., Stcokwell, T. B., Brownley, A., Thomas, D. W., Algire, M. A., Merryman, C., Young, L., Noskov, V. N., Glass, J. I., Venter, C., Hutchison, C. A., and Smith, H. O. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  15. Shao, Z., Zhao, H., and Zhao, H. (2008) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 37, 1–10.

    Google Scholar 

  16. Metzger, D., and Feil, R. (1990) Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10, 470–476.

    Article  Google Scholar 

  17. Nash, H. A. (1975) Integrative recombination of bacteriophage Lambda DAN in vitro. Proc. Nat. Acad. Sci. U.S.A. 72, 1072–1076.

    Article  CAS  Google Scholar 

  18. Li, M. Z., and Elledge, S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nature Methods 4, 251–256.

    Article  PubMed  CAS  Google Scholar 

  19. Bunny, K. (2005) In-Fusion™ PCR universal cloning kits. Clontechniques 1–3. (http://www.clontech.com/images/ctq/OCT05UPD/CR682071_US_InFusion.pdf) (access in August 31st, 2009).

  20. Gilfoyle, A. P., and Mabbutt, B. C. (2007) Evaluation of the In-Fusion™ Cloning system for structural genomics. Clontechniques 20–21. (http://clontech.takara-bio.co.jp/archive/200711/pdf/200711_20.pdf) (access in August 31st, 2009).

  21. Bitinaite, J., Rubino, M., Varma, K. H., Schildkraut, I., Vaislavila, R., and Vaiskunaite, R. (2007) USER™ friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res. 35, 1992–2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dahm, P., Jennewein, S. (2010). Introduction of the Early Pathway to Taxol Biosynthesis in Yeast by Means of Biosynthetic Gene Cluster Construction Using SOE-PCR and Homologous Recombination. In: Fett-Neto, A. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 643. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-723-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-723-5_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-722-8

  • Online ISBN: 978-1-60761-723-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics