Skip to main content

Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler’s Virus-Induced Demyelinating Disease

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Experimental autoimmune encephalomyelitis (EAE) and Theiler’s Murine Encephalitis Virus-Induced Demyelinating Disease (TMEV-IDD) are two clinically relevant murine models of multiple sclerosis (MS). Like MS, both are characterized by mononuclear cell infiltration into the CNS and demyelination. EAE is induced by either the administration of myelin protein or peptide in adjuvant or by the adoptive transfer of encephalitogenic T cell blasts into naïve recipients. The relative merits of each of these protocols are compared. Depending on the type of question being asked, different mouse strains and peptides are used. Different disease courses are observed with different strains and different peptides in active EAE. These variations are also addressed. Additionally, issues relevant to clinical grading of EAE in mice are discussed. In addition to EAE induction, useful references for other disease indicators such as DTH, in vitro proliferation, and immunohistochemistry are provided. TMEV-IDD is a useful model for understanding the possible viral etiology of MS. This section provides detailed information on the preparation of viral stocks and subsequent intracerebral infection of mice. Additionally, virus plaque assay and clinical disease assessment are discussed. Recently, recombinant TMEV strains have been created for the study of molecular mimicry which incorporate various 30 amino acid myelin epitopes within the leader region of TMEV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown A, McFarlin DE, Raine CS (1982) Chronologic neuropathology of relapsing experimental allergic encephalomyelitis in the mouse. Lab Invest 46:171–185

    PubMed  Google Scholar 

  2. Karcher D, Lassmann H, Lowenthal A, Kitz K, Wisniewski HM (1982) Antibodies-restricted heterogeneity in serum and cerebrospinal fluid of chronic relapsing experimental allergic encephalomyelitis. J Neuroimmunol 2:93–106

    Article  PubMed  Google Scholar 

  3. Lassmann H (1983) Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis. J Neurol 229:207–220

    Article  PubMed  Google Scholar 

  4. Tan LJ, Kennedy MK, Miller SD (1992) Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 148:2748–2755

    PubMed  Google Scholar 

  5. Eng LF, Ghirnikar RS, Lee YL (1996) Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem Res 21:511–525

    Article  PubMed  Google Scholar 

  6. Miller SD, Karpus WJ (1994) The immunopathogenesis and regulation of T-cell mediated demyelinating diseases. Immunol Today 15:356–361

    Article  PubMed  Google Scholar 

  7. Williams KC, Ulvestad E, Hickey WF (1994) Immunology of multiple sclerosis [Review) [300 refs). Clin Neurosci 2:229–245

    PubMed  Google Scholar 

  8. Lublin FD (1985) Relapsing experimental allergic encephalomyelitis. An autoimmune model of multiple sclerosis. Springer Semin Immunopathol 8:197–208

    Article  PubMed  Google Scholar 

  9. Arnason BG (1983) Relevance of experimental allergic encephalomyelitis to multiple sclerosis. Neurol Clin 1:765–782

    PubMed  Google Scholar 

  10. Traugott U, Stone SH, Raine CS (1979) Chronic relapsing experimental allergic encephalomyelitis. Correlation of circulating lymphocyte fluctuations with disease activity in suppressed and unsuppressed animals. J Neurol Sci 41:17–29

    Article  PubMed  Google Scholar 

  11. Traugott U, McFarlin DE, Raine CS (1986) Immunopathology of the lesion in chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Cell Immunol 99:395–410

    Article  PubMed  Google Scholar 

  12. Boyle EA, McGeer PL (1990) Cellular immune response in multiple sclerosis plaques. Am J Pathol 137:575–584

    PubMed  Google Scholar 

  13. McCallum K, Esiri MM, Tourtellotte WW, Booss J (1987) T cell subsets in multiple sclerosis. Gradients at plaque borders and differences in nonplaque regions. Brain 110:1297–1308

    Article  PubMed  Google Scholar 

  14. Renno T, Krakowski M, Piccirillo C, Lin JY, Owens T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J Immunol 154:944–953

    PubMed  Google Scholar 

  15. Swanborg RH (1995) Experimental autoimmune encephalomyelitis in rodents as a model for human demyelinating disease [see comments) [Review) [99 refs). Clin Immunol Immnopathol 77:4–13

    Article  Google Scholar 

  16. Epstein LG, Prineas JW, Raine CS (1983) Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis. J Neurol Sci 61:341–348

    Article  PubMed  Google Scholar 

  17. Smith ME (1993) Phagocytosis of myelin by microglia in vitro. J Neurosci Res 35:480–487

    Article  PubMed  Google Scholar 

  18. Sommer MA, Forno LS, Smith ME (1992) EAE cerebrospinal fluid augments in vitro phagocytosis and metabolism of CNS myelin by macrophages. J Neurosci Res 32:384–394

    Article  PubMed  Google Scholar 

  19. Colover J (1988) Immunological and cytological studies of autoimmune demyelination and multiple sclerosis. Brain Behav Immun 2:341–345

    Article  PubMed  Google Scholar 

  20. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N (1992) Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356:63–66

    Article  PubMed  Google Scholar 

  21. Kawakami N, Lassmann S, Li Z, Odoardi F, Ritter T, Ziemssen T, Klinkert WE, Ellwart JW, Bradl M, Krivacic K, Lassmann H, Ransohoff RM, Volk HD, Wekerle H, Linington C, Flugel A (2004) The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J Exp Med 199:185–197

    Article  PubMed  Google Scholar 

  22. Lees JR, Golumbek PT, Sim J, Dorsey D, Russell JH (2008) Regional CNS responses to IFN-gamma determine lesion localization patterns during EAE pathogenesis. J Exp Med 205:2633–2642

    Article  PubMed  Google Scholar 

  23. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205:1535–1541

    Article  PubMed  Google Scholar 

  24. Cross AH, Raine CS (1990) Serial adoptive transfer of murine experimental allergic encephalomyelitis: successful transfer is dependent on active disease in the donor. J Neuroimmunol 28:27–37

    Article  PubMed  Google Scholar 

  25. Raine CS, Mokhtarian F, McFarlin DE (1984) Adoptively transferred chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Neuropathologic analysis. Lab Invest 51:534–546

    PubMed  Google Scholar 

  26. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. Nature 317:355–358

    Article  PubMed  Google Scholar 

  27. Kim C, Tse HY (1993) Adoptive transfer of murine experimental autoimmune encephalomyelitis in SJL.Thy-1 congenic mouse strains. J Neuroimmunol 46:129–136

    Article  PubMed  Google Scholar 

  28. Howard LM, Miller SD (2001) Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J Immunol 166:1547–1553

    PubMed  Google Scholar 

  29. Dal Canto M, Lipton HL, Miller SD, Melvold RW, Capen CC, Jones TC, Migaki G (1986) Theiler’s murine encephalomyelitis virus (TMEV) infection in mice as a model for MS. In: Capen CC, Jones TC, Migaki G (eds.). In Registry of comparative pathology, handbook of animal models of human disease, VIIth fascicle. AFIP, Washington, D.C.

    Google Scholar 

  30. Miller SD (1995) Pathogenesis of Theiler’s murine encephalomyelitis virus-induced demyelinating disease – a model of multiple sclerosis. ACLAD Newslett 16:4–6

    Google Scholar 

  31. Pevear DC, Borkowski J, Luo M, Lipton H (1988) Sequence comparison of a highly virulent and a less virulent strain of Theiler’s virus. Amino acid differences on a three- dimensional model identify the location of possible immunogenic sites. Ann NY Acad Sci 540:652–653

    Article  PubMed  Google Scholar 

  32. Pevear DC, Calenoff M, Rozhon E, Lipton HL (1987) Analysis of the complete nucleotide sequence of the picornavirus Theiler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. J Virol 61:1507–1516

    PubMed  Google Scholar 

  33. Lipton HL (1980) Persistent Theiler’s murine encephalomyelitis virus infection in mice depends on plaque size. J Gen Virol 46:169–177

    Article  PubMed  Google Scholar 

  34. Clatch RJ, Miller SD, Metzner R, Dal Canto MC, Lipton HL (1990) Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler’s murine encephalomyelitis virus (TMEV). Virology 176:244–254

    Article  PubMed  Google Scholar 

  35. Peterson JD, Karpus WJ, Clatch RJ, Miller SD (1993) Split tolerance of Th1 and Th2 cells in tolerance to Theiler’s murine encephalomyelitis virus. Eur J Immunol 23:46–55

    Article  PubMed  Google Scholar 

  36. Katz-Levy Y, Neville KL, Padilla J, Rahbe SM, Begolka WS, Girvin AM, Olson JK, Vanderlugt CL, Miller SD (2000) Temporal development of autoreactive Th1 responses and endogenous antigen presentation of self myelin epitopes by CNS-resident APCs in Theiler’s virus-infected mice. J Immunol 165:5304–5314

    PubMed  Google Scholar 

  37. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    Article  PubMed  Google Scholar 

  38. Prineas J (1975) Pathology of the early lesion in multiple sclerosis. Hum Pathol 6:531–554

    Article  PubMed  Google Scholar 

  39. Dal Canto MC, Lipton HL (1975) Primary demyelination in Theiler’s virus infection. An ultrastructural study. Lab Invest 33:626–637

    PubMed  Google Scholar 

  40. Nathanson N, Miller A (1978) Epidemiology of multiple sclerosis: critique of evidence for a viral etiology. Am J Epidemiol 107:451–461

    PubMed  Google Scholar 

  41. Kurtzke JF, Raine CS, McFarlin HF, Tourtellotte WW (1997) The epidemiology of multiple sclerosis. In: Multiple sclerosis: clinical and pathogenetic basis. Chapman and Hall, London, pp 91–139

    Google Scholar 

  42. Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    PubMed  Google Scholar 

  43. Walker MR, Mannie MD (2002) Acquisition of functional MHC class II/peptide complexes by T cells during thymic development and CNS-directed pathogenesis. Cell Immunol 218:13–25

    Article  PubMed  Google Scholar 

  44. Segal BM, Shevach EM (1996) IL-12 unmasks latent autoimmune disease in resistant mice. J Exp Med 184:771–775

    Article  PubMed  Google Scholar 

  45. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16:406–412

    Article  PubMed  Google Scholar 

  46. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342

    Article  PubMed  Google Scholar 

  47. Dal Canto MC, Melvold RW, Kim BS, Miller SD (1995) Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler’s murine encephalomyelitis virus (TMEV) infection – a pathological and immunological comparison. Microsc Res Tech 32:215–229

    Article  PubMed  Google Scholar 

  48. Olson JK, Croxford JL, Calenoff M, Dal Canto MC, Miller SD (2001) A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest 108:311–318

    PubMed  Google Scholar 

  49. Clatch RJ, Lipton HL, Miller SD (1986) Characterization of Theiler’s murine encephalomyelitis virus (TMEV)-specific delayed-type hypersensitivity responses in TMEV-induced demyelinating disease: correlation with clinical signs. J Immunol 136:920–927

    PubMed  Google Scholar 

  50. Gerety SJ, Clatch RJ, Lipton HL, Goswami RG, Rundell MK, Miller SD (1991) Class II-restricted T cell responses in Theiler’s murine encephalomyelitis virus-induced demyelinating disease. IV. Identification of an immunodominant T cell determinant on the N-terminal end of the VP2 capsid protein in susceptible SJL/J mice. J Immunol 146:2401–2408

    PubMed  Google Scholar 

  51. Jin YH, Kang B, Kim BS (2009) Theiler’s virus infection induces a predominant pathogenic CD4+ T cell response to RNA polymerase in susceptible SJL/J mice. J Virol 83:10981–10992

    Article  PubMed  Google Scholar 

  52. Miller SD, Olson JK, Croxford JL (2001) Multiple pathways to induction of virus-induced autoimmune demyelination: lessons from Theiler’s virus infection. J Autoimmun 16:219–227

    Article  PubMed  Google Scholar 

  53. Duong TT, Finkelman FD, Singh B, Strejan GH (1994) Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains. J Neuroimmunol 53:101–107

    Article  PubMed  Google Scholar 

  54. Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621

    Article  PubMed  Google Scholar 

  55. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    Article  PubMed  Google Scholar 

  56. Begolka WS, Vanderlugt CL, Rahbe SM, Miller SD (1998) Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J Immunol 161:4437–4446

    PubMed  Google Scholar 

  57. Sakai K, Zamvil SS, Mitchell DJ, Lim M, Rothbard JB, Steinman L (1988) Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 19:21–32

    Article  PubMed  Google Scholar 

  58. Tuohy VK, Thomas DM (1993) A third encephalitogenic determinant of myelin proteolipid protein (PLP) for SJL/J mice. J Immunol 150:194A

    Google Scholar 

  59. Greer JM, Kuchroo VK, Sobel RA, Lees MB (1992) Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178–191) for SJL mice. J Immunol 149:783–788

    PubMed  Google Scholar 

  60. Greer JM, Sobel RA, Sette A, Southwood S, Lees MB, Kuchroo VK (1996) Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol 156:371–379

    PubMed  Google Scholar 

  61. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV, Matthieu JM, Baker D (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356

    PubMed  Google Scholar 

  62. Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard JB (1986) T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324:258–260

    Article  PubMed  Google Scholar 

  63. Whitham RH, Jones RE, Hashim GA, Hoy CM, Wang RY, Vandenbark AA, Offner H (1991) Location of a new encephalitogenic epitope (residues 43 to 64) in proteolipid protein that induces relapsing experimental autoimmune encephalomyelitis in PL/J and (SJL × PL)F1 mice. J Immunol 147:3803–3808

    PubMed  Google Scholar 

  64. Mendel I, Kerlero DR, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25:1951–1959

    Article  PubMed  Google Scholar 

  65. Tompkins SM, Padilla J, Dal Canto MC, Ting JP, Van Kaer L, Miller SD (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183

    PubMed  Google Scholar 

  66. Tuohy VK, Lu ZJ, Sobel RA, Laursen RA, Lees MB (1988) A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J Immunol 141:1126–1130

    PubMed  Google Scholar 

  67. Endoh M, Kunishita T, Nihei J, Nishizawa M, Tabira T (1990) Susceptibility to proteolipid apoprotein and its encephalitogenic determinants in mice. Int Arch Allergy Appl Immunol 92:433–438

    Article  PubMed  Google Scholar 

  68. Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brain stem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol (Berl) 100:174–182

    Article  Google Scholar 

  69. Maron R, Hancock WW, Slavin A, Hattori M, Kuchroo V, Weiner HL (1999) Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. Int Immunol 11:1573–1580

    Article  PubMed  Google Scholar 

  70. Slavin A, Ewing C, Liu J, Ichikawa M, Slavin J, Bernard CC (1998) Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28:109–120

    Article  PubMed  Google Scholar 

  71. McRae BL, Kennedy MK, Tan LJ, Dal Canto MC, Miller SD (1992) Induction of active and adoptive chronic-relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 38:229–240

    Article  PubMed  Google Scholar 

  72. Miller SD, Tan LJ, Kennedy MK, Dal Canto MC (1991) Specific immunoregulation of the induction and effector stages of relapsing EAE via neuroantigen-specific tolerance induction. Ann NY Acad Sci 636:79–94

    Article  PubMed  Google Scholar 

  73. Tuohy VK, Thomas DM (1995) Sequence 104-117 of myelin proteolipid protein is a cryptic encephalitogenic T cell determinant for SJL/J mice. J Neuroimmunol 56:161–170

    Article  PubMed  Google Scholar 

  74. Skundric DS, Kim C, Tse HY, Raine CS (1993) Homing of T cells to the central nervous system throughout the course of relapsing experimental autoimmune encephalomyelitis in Thy-1 congenic mice. J Neuroimmunol 46:113–121

    Article  PubMed  Google Scholar 

  75. Fritz RB, Zhao ML (1994) Encephalitogenicity of myelin basic protein exon-2 peptide in mice. J Neuroimmunol 51:1–6

    Article  PubMed  Google Scholar 

  76. Segal BM, Raine CS, McFarlin DE, Voskuhl RR, McFarland HF (1994) Experimental allergic encephalomyelitis induced by the peptide encoded by exon 2 of the MBP gene, a peptide implicated in remyelination. J Neuroimmunol 51:7–19

    Article  PubMed  Google Scholar 

  77. Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2 – T lymphocytes. J Immunol 127:1420–1423

    PubMed  Google Scholar 

  78. Pettinelli CB, Fritz RB, Chou CHJ, McFarlin DE (1982) Encephalitogenic activity of guinea pig myelin basic protein in the SJL mouse. J Immunol 129:1209–1211

    PubMed  Google Scholar 

  79. Shaw MK, Kim C, Hao HW, Chen F, Tse HY (1996) Induction of myelin basic protein-specific experimental autoimmune encephalomyelitis in C57BL/6 mice: mapping of T cell epitopes and T cell receptor V beta gene segment usage. J Neurosci Res 45:690–699

    Article  PubMed  Google Scholar 

  80. Clark RB, Grunnet M, Lingenheld EG (1997) Adoptively transferred EAE in mice bearing the lpr mutation. Clin Immunol Immnopathol 85:315–319

    Article  Google Scholar 

  81. Mendel I, Shevach EM (2002) Differentiated Th1 autoreactive effector cells can induce experimental autoimmune encephalomyelitis in the absence of IL-12 and CD40/CD40L interactions. J Neuroimmunol 122:65–73

    Article  PubMed  Google Scholar 

  82. Segal BM, Dwyer BK, Shevach EM (1998) An Interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 187:537–546

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

McCarthy, D.P., Richards, M.H., Miller, S.D. (2012). Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler’s Virus-Induced Demyelinating Disease. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics