Skip to main content

Flow Cytometric Identification of Fibrocytes in Scleroderma Lung Disease

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

Scleroderma is an autoimmune disease characterized by the progressive and dysregulated accumulation of collagen in the skin and internal organs. Pulmonary complications including interstitial lung disease have emerged as the greatest cause of mortality in this disease. Because treatments are limited, new areas of investigation are sorely needed. An emerging area of interest in this field is a potential role for fibrocytes as biomarkers or mediators of disease. Fibrocytes are monocyte-derived mesenchymal progenitor cells that exhibit features of extracellular matrix production and wound contraction in addition to immunologic functions such as cytokine and chemokine production, antigen presentation, leukocyte trafficking, and modulation of angiogenesis. Fibrocytes could participate in the pathogenesis of scleroderma lung disease through any or all of these functions and may be useful biomarkers of disease activity. This chapter presents protocols that have been developed for the study of fibrocytes obtained from human circulation and tissues. Protocols for the quantification of fibrocytes in murine models also are described, along with discussion of common technical challenges. It is hoped that this information will allow further investigation of the role that fibrocytes might play in Scleroderma-related lung disease and perhaps lead to new areas of study in this difficult-to-treat and deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steen VD, Medsger TA (2007) Changes in causes of death in systemic sclerosis, 1972–2002. Ann Rheum Dis 66:940–944

    Article  PubMed  Google Scholar 

  2. Goh NS, Desai SR, Veeraraghavan S, Hansell DM, Copley SJ, Maher TM, Corte TJ, Sander CR, Ratoff J, Devaraj A et al (2008) Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med 177: 1248–1254

    Article  PubMed  Google Scholar 

  3. Tashkin DP, Elashoff R, Clements PJ, Goldin J, Roth MD, Furst DE, Arriola E, Silver R, Strange C, Bolster M et al (2006) Cyclophosphamide versus placebo in scleroderma lung disease. N Engl J Med 354:2655–2666

    Article  PubMed  CAS  Google Scholar 

  4. Swigris JJ, Olson AL, Fischer A, Lynch DA, Cosgrove GP, Frankel SK, Meehan RT, Brown KK (2006) Mycophenolate mofetil is safe, well tolerated, and preserves lung function in patients with connective tissue disease-related interstitial lung disease. Chest 130:30–36

    Article  PubMed  CAS  Google Scholar 

  5. Daoussis D, Liossis SN, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C, Karampetsou M, Yiannopoulos G, Andonopoulos AP (2010) Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford) 49:271–280

    Article  CAS  Google Scholar 

  6. D’Ovidio F, Singer LG, Hadjiliadis D, Pierre A, Waddell TK, de Perrot M, Hutcheon M, Miller L, Darling G, Keshavjee S (2005) Prevalence of gastroesophageal reflux in end-stage lung disease candidates for lung transplant. Ann Thorac Surg 80:1254–1260

    Article  PubMed  Google Scholar 

  7. D’Ovidio F, Mura M, Tsang M, Waddell TK, Hutcheon MA, Singer LG, Hadjiliadis D, Chaparro C, Gutierrez C, Pierre A et al (2005) Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J Thorac Cardiovasc Surg 129:1144–1152

    Article  PubMed  Google Scholar 

  8. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  9. Galligan CL, Siminovitch KA, Keystone EC, Bykerk V, Perez OD, Fish EN (2010) Fibrocyte activation in rheumatoid arthritis. Rheumatology (Oxford) 49:640–651

    Article  CAS  Google Scholar 

  10. Douglas RS, Afifiyan NF, Hwang CJ, Chong K, Haider U, Richards P, Gianoukakis AG, Smith TJ (2010) Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 95:430–438

    Article  PubMed  CAS  Google Scholar 

  11. Peng XP et al (2011) Local apoptosis promotes collagen production by monocyte derived cells. Fibrogen Tissue Repair 4:12

    Google Scholar 

  12. Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowitz AN, Murray LA, Siner JM, Antin-Ozerkis DE, Montgomery RR et al Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest 6:812–823

    Google Scholar 

  13. Gan Y, Reilkoff RA, Peng X, Russell TR, Chen QC, Mathai SK, Gulati M, Homer RJ, Elias JA, Bucala RJ et al (2011) Role of Semaphorin 7a in TGF 1 induced lung fibrosis, fibrocyte differentiation, and scleroderma-related interstitial lung disease 63:2484–2494

    Google Scholar 

  14. Moeller A, Gilpin SE, Ask K, Cox G, Cook D, Gauldie J, Margetts PJ, Farkas L, Dobranowski J, Boylan C et al (2009) Circulating fibrocytes are an indicator for poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 7:588–594

    Google Scholar 

  15. Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM (2007) Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun 353:104–108

    Article  PubMed  CAS  Google Scholar 

  16. Mehrad B, Burdick MD, Strieter RM (2009) Fibrocyte CXCR4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol 41:1708–1718

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    PubMed  CAS  Google Scholar 

  18. Wang CH, Huang CD, Lin HC, Lee KY, Lin SM, Liu CY, Huang KH, Ko YS, Chung KF, Kuo HP (2008) Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med 178: 583–591

    Article  PubMed  CAS  Google Scholar 

  19. Nihlberg K, Larsen K, Hultgardh-Nilsson A, Malmstrom A, Bjermer L, Westergren-Thorsson G (2006) Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 7:50

    Article  PubMed  Google Scholar 

  20. Vakil V, Sung JJ, Piecychna M, Crawford JR, Kuo P, Abu-Alfa AK, Cowper SE, Bucala R, Gomer RH (2009) Gadolinium-containing magnetic resonance image contrast agent promotes fibrocyte differentiation. J Magn Reson Imaging 30:1284–1288

    Article  PubMed  Google Scholar 

  21. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–C12

    Article  PubMed  CAS  Google Scholar 

  22. Nikam VS, Wecker G, Schermuly R, Rapp U, Szelepusa K, Seeger W, Voswinckel R (2011) Treprostinil inhibits adhesion and differentiation of fibrocytes via cAMP and Rap dependent ERK inactivation. Am J Respir Cell Mol Biol 45:692–703

    Google Scholar 

  23. Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K, Gobel N, Talke Y, Schweda F, Mack M (2009) CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci USA 106: 17892–17897

    Article  PubMed  CAS  Google Scholar 

  24. Katebi M, Fernandez P, Chan ES, Cronstein BN (2008) Adenosine A2A receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation 31: 299–303

    Article  PubMed  CAS  Google Scholar 

  25. Kisseleva T, Uchinami H, Feirt N, Quintana-Bustamante O, Segovia JC, Schwabe RF, Brenner DA (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45:429–438

    Article  PubMed  CAS  Google Scholar 

  26. Haudek SB, Cheng J, Du J, Wang Y, Hermosillo-Rodrigues J, Trial J, Taffet GE, ML E (2010) Monocytic fibroblast precursors mediate fibrosis in angiotensin-II-induced cardiac hypertrophy. J Mol Cell Cardiol 49:499–507

    Article  PubMed  CAS  Google Scholar 

  27. Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG et al (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 103:18284–18289

    Article  PubMed  CAS  Google Scholar 

  28. Haudek SB, Trial J, Xia Y, Gupta D, Pilling D, Entman ML (2008) Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells. Proc Natl Acad Sci USA 105:10179–10184

    Article  PubMed  CAS  Google Scholar 

  29. Buday A, Orsy P, Godo M, Mozes M, Kokeny G, Lacza Z, Koller A, Ungvari Z, Gross ML, Benyo Z et al (2010) Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE(−/−) mice. Am J Physiol Heart Circ Physiol 299:H386–H395

    Article  PubMed  CAS  Google Scholar 

  30. Murray LA, Chen Q, Kramer MS, Hesson DP, Argentieri RL, Peng X, Gulati M, Homer RJ, Russell T, van Rooijen N et al TGF-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid P. Int J Biochem Cell Biol 43:154–162

    Google Scholar 

  31. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    PubMed  CAS  Google Scholar 

  32. Yang L, Scott PG, Giuffre J, Shankowsky HA, Ghahary A, Tredget EE (2002) Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 82:1183–1192

    PubMed  CAS  Google Scholar 

  33. Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 4:e7475

    Article  PubMed  Google Scholar 

  34. Chesney J, Bacher M, Bender A, Bucala R (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA 94:6307–6312

    Article  PubMed  CAS  Google Scholar 

  35. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870

    Article  PubMed  CAS  Google Scholar 

  36. Bianchetti L, Barczyk M, Cardoso J, Schmidt M, Bellini A, Mattoli S (2011) Extracellular matrix remodeling properties of human fibrocytes. J Cell Mol Med 3:483–495

    Google Scholar 

  37. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  38. Niedermeier M, Reich B, Gomez MR, Denzel A, Schmidbauer K, Gobel N, Talke Y, Schweda F, Mack M (2009) CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci USA 106:17892–17897

    Article  PubMed  CAS  Google Scholar 

  39. Pilling D, Buckley CD, Salmon M, Gomer RH (2003) Inhibition of fibrocyte differentiation by serum amyloid P. J Immunol 171:5537–5546

    PubMed  CAS  Google Scholar 

  40. Pilling D, Tucker NM, Gomer RH (2006) Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol 79:1242–1251

    Article  PubMed  CAS  Google Scholar 

  41. Pilling D, Roife D, Wang M, Ronkainen SD, Crawford JR, Travis EL, Gomer RH (2007) Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J Immunol 179:4035–4044

    PubMed  CAS  Google Scholar 

  42. Castano AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML Jr, Duffield JS (2009) Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med 1:5ra13

    Article  PubMed  Google Scholar 

  43. Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333

    Article  PubMed  CAS  Google Scholar 

  44. Moore BB, Murray L, Das A, Wilke CA, Herrygers AB, Toews GB (2006) The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 35:175–181

    Article  PubMed  CAS  Google Scholar 

  45. Sakai N, Wada T, Yokoyama H, Lipp M, Ueha S, Matsushima K, Kaneko S (2006) Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci USA 103:14098–14103

    Article  PubMed  CAS  Google Scholar 

  46. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606

    Article  PubMed  CAS  Google Scholar 

  47. Lazova R, Gould Rothberg BE, Rimm D, Scott G (2009) The semaphorin 7A receptor Plexin C1 is lost during melanoma metastasis. Am J Dermatopathol 31:177–181

    Article  PubMed  Google Scholar 

  48. Gomperts BN, Strieter RM (2007) Fibrocytes in lung disease. J Leukoc Biol 82:449–456

    Article  PubMed  CAS  Google Scholar 

  49. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  PubMed  CAS  Google Scholar 

  50. Hashimoto N, J H, Liu T, Chensue SW, Phan SH (2004) Bone marrow derived progenitor cells in pulmonary fibrosis. J Clin Invest 113:243–252

    PubMed  CAS  Google Scholar 

  51. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    PubMed  CAS  Google Scholar 

  52. Balmelli C, Alves MP, Steiner E, Zingg D, Peduto N, Ruggli N, Gerber H, McCullough K, Summerfield A (2007) Responsiveness of fibrocytes to toll-like receptor danger signals. Immunobiology 212:693–699

    Article  PubMed  CAS  Google Scholar 

  53. Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15:2215–2224

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H, Kitao T, Takagi J, Rennert PD, Kolodkin AL et al (2007) Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 446:680–684

    Article  PubMed  CAS  Google Scholar 

  55. Czopik AK, Bynoe MS, Palm N, Raine CS, Medzhitov R (2006) Semaphorin 7A is a negative regulator of T cell responses. Immunity 24:591–600

    Article  PubMed  CAS  Google Scholar 

  56. Barth PJ, Ebrahimsade S, Hellinger A, Moll R, Ramaswamy A (2002) CD34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch 440:128–133

    Article  PubMed  CAS  Google Scholar 

  57. Barth PJ, Koster H, Moosdorf R (2005) CD34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol Res Pract 201:301–304

    Article  PubMed  Google Scholar 

  58. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA, Fearon DT (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830

    Article  PubMed  CAS  Google Scholar 

  59. van Deventer HW, Wu QP, Bergstralh DT, Davis BK, O’Connor BP, Ting JP, Serody JS (2008) C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol 173:253–264

    Article  PubMed  Google Scholar 

  60. Herzog EL, Bucala R (2010) Fibrocytes in health and disease. Exp Hematol 38:548–556

    Article  PubMed  CAS  Google Scholar 

  61. Quan TE, Bucala R (2007) Culture and analysis of circulating fibrocytes. Methods Mol Med 135:423–434

    Article  PubMed  CAS  Google Scholar 

  62. Lawrence JM, Umekubo MA, Chiu V, Petitti DB (2000) Split sample analysis of serum folate levels after 18 days in frozen storage. Clin Lab 46:483–486

    Article  PubMed  CAS  Google Scholar 

  63. Garn H (2006) Specific aspects of flow cytometric analysis of cells from the lung. Exp Toxicol Path 57:S21–S24

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants K08 HL079066 from the National Institutes of Health, the National Scleroderma Foundation, the American Thoracic Society, and funds from the Yale Department of Internal Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bucala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Russell, T.M., Herzog, E.L., Bucala, R. (2012). Flow Cytometric Identification of Fibrocytes in Scleroderma Lung Disease. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics