Skip to main content

Analysis of Renal Mononuclear Phagocytes in Murine Models of SLE

  • Protocol
  • First Online:
Autoimmunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 900))

Abstract

In this chapter we present methods for the isolation and characterization of mononuclear phagocytes from the kidneys of mice with SLE. Activation of these cells is associated with the onset of clinical disease in mice and infiltration with these cells is associated with poor prognosis in humans. Using magnetic beads followed by flow cytometric sorting, pure populations of cells are obtained that are functional in a variety of assays. Sufficient numbers of cells are obtained for genomic characterization. An analysis of the function of these cells should lead to a better understanding of the inflammatory processes that cause renal impairment in SLE and other renal inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson A, Aranow C (2006) Pathogenesis and treatment of systemic lupus erythematosus nephritis. Curr Opin Rheumatol 18:468–475

    PubMed  CAS  Google Scholar 

  2. Chan TM (2005) Preventing renal failure in patients with severe lupus nephritis. Kidney Int Suppl 94:S116–S119

    Article  PubMed  CAS  Google Scholar 

  3. Contreras G, Pardo V, Leclercq B, Lenz O, Tozman E, O’Nan P, Roth D (2004) Sequential therapies for proliferative lupus nephritis. N Engl J Med 350:971–980

    Article  PubMed  CAS  Google Scholar 

  4. Contreras G, Tozman E, Nahar N, Metz D (2005) Maintenance therapies for proliferative lupus nephritis: mycophenolate mofetil, azathioprine and intravenous cyclophosphamide. Lupus 14(Suppl 1):s33–s38

    Article  PubMed  CAS  Google Scholar 

  5. Costenbader KH, Solomon DH, Winkelmayer W, Brookhart MA (2008) Incidence of end-stage renal disease due to lupus nephritis in the U.S., 1995–2004. Arthrit Rheum Abstract 1927

    Google Scholar 

  6. Schwartz MM (2007) The pathology of lupus nephritis. Semin Nephrol 27:22–34

    Article  PubMed  CAS  Google Scholar 

  7. Hill GS, Delahousse M, Nochy D, Mandet C, Bariety J (2001) Proteinuria and tubulointerstitial lesions in lupus nephritis. Kidney Int 60:1893–1903

    Article  PubMed  CAS  Google Scholar 

  8. Hill GS, Delahousse M, Nochy D, Remy P, Mignon F, Mery JP, Bariety J (2001) Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int 59:304–316

    Article  PubMed  CAS  Google Scholar 

  9. Li QZ, Xie C, Wu T, Mackay M, Aranow C, Putterman C, Mohan C (2005) Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J Clin Invest 115:3428–3439

    Article  PubMed  Google Scholar 

  10. Bagavant H, Fu SM (2005) New insights from murine lupus: disassociation of autoimmunity and end organ damage and the role of T cells. Curr Opin Rheumatol 17:523–528

    Article  PubMed  CAS  Google Scholar 

  11. Christensen SR, Kashgarian M, Alexopoulou L, Flavell RA, Akira S, Shlomchik MJ (2005) Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 202:321–331

    Article  PubMed  CAS  Google Scholar 

  12. Turnberg D, Cook HT (2005) Complement and glomerulonephritis: new insights. Curr Opin Nephrol Hypertens 14:223–228

    Article  PubMed  CAS  Google Scholar 

  13. Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054

    Article  PubMed  CAS  Google Scholar 

  14. Anders HJ, Schlondorff D (2007) Toll-like receptors: emerging concepts in kidney disease. Curr Opin Nephrol Hypertens 16:177–183

    Article  PubMed  CAS  Google Scholar 

  15. Sesin CA, Yin X, Esmon CT, Buyon JP, Clancy RM (2005) Shedding of endothelial protein C receptor contributes to vasculopathy and renal injury in lupus: in vivo and in vitro evidence. Kidney Int 68:110–120

    Article  PubMed  CAS  Google Scholar 

  16. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639–1648

    Article  PubMed  CAS  Google Scholar 

  17. Lewis EJ, Schwartz MM (2005) Pathology of lupus nephritis. Lupus 14:31–38

    Article  PubMed  CAS  Google Scholar 

  18. Anders HJ, Ninichuk V, Schlondorff D (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonists. Kidney Int 69:29–32

    Article  PubMed  Google Scholar 

  19. Holdsworth SR, Tipping PG (2007) Leukocytes in glomerular injury. Semin Immunopathol 29:355–374

    Article  PubMed  Google Scholar 

  20. Foster MH (2007) T cells and B cells in lupus nephritis. Semin Nephrol 27:47–58

    Article  PubMed  CAS  Google Scholar 

  21. Schiffer L, Sinha J, Wang X, Huang W, von Gersdorff G, Schiffer M, Madaio MP, Davidson A (2003) Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J Immunol 171:489–497

    PubMed  CAS  Google Scholar 

  22. Daikh DI, Wofsy D (2001) Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol 166:2913–2916

    PubMed  CAS  Google Scholar 

  23. Timoshanko JR, Sedgwick JD, Holdsworth SR, Tipping PG (2003) Intrinsic renal cells are the major source of tumor necrosis factor contributing to renal injury in murine crescentic glomerulonephritis. J Am Soc Nephrol 14:1785–1793

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Wang Y, Cai Q, Zheng G, Lee VW, Zheng D, Li X, Tan TK, Harris DC (2008) By homing to the kidney, activated macrophages potently exacerbate renal injury. Am J Pathol 172:1491–1499

    Article  PubMed  CAS  Google Scholar 

  25. Ferenbach D, Hughes J (2008) Macrophages and dendritic cells: what is the difference? Kidney Int 74:5–7

    Article  PubMed  CAS  Google Scholar 

  26. Kurts C, Heymann F, Lukacs-Kornek V, Boor P, Floege J (2007) Role of T cells and dendritic cells in glomerular immunopathology. Semin Immunopathol 29:317–335

    Article  PubMed  CAS  Google Scholar 

  27. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–212

    Article  PubMed  CAS  Google Scholar 

  28. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  29. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  30. Hume DA (2008) Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1:432–441

    Article  PubMed  CAS  Google Scholar 

  31. Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211:609–618

    Article  PubMed  CAS  Google Scholar 

  32. Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537

    Article  PubMed  CAS  Google Scholar 

  33. Swaminathan S, Griffin MD (2008) First responders: understanding monocyte-lineage traffic in the acutely injured kidney. Kidney Int 74:1509–1511

    Article  PubMed  CAS  Google Scholar 

  34. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–670

    Article  PubMed  CAS  Google Scholar 

  35. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408

    Article  PubMed  CAS  Google Scholar 

  36. Skold M, Behar SM (2008) Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J Immunol 181:6349–6360

    PubMed  Google Scholar 

  37. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  38. Wu L, Liu YJ (2007) Development of dendritic-cell lineages. Immunity 26:741–750

    Article  PubMed  CAS  Google Scholar 

  39. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M (2007) Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 8:578–583

    Article  PubMed  CAS  Google Scholar 

  40. Auffray C, Emre Y, Geissmann F (2008) Homeostasis of dendritic cell pool in lymphoid organs. Nat Immunol 9:584–586

    Article  PubMed  CAS  Google Scholar 

  41. Kamath AT, Henri S, Battye F, Tough DF, Shortman K (2002) Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100:1734–1741

    PubMed  CAS  Google Scholar 

  42. Kruger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE, Engel D, Giese B, Muller-Newen G, Floege J, Kurts C (2004) Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 15:613–621

    Article  PubMed  Google Scholar 

  43. Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, Nelson PJ (2006) CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70:591–596

    PubMed  CAS  Google Scholar 

  44. Segerer S, Heller F, Lindenmeyer MT, Schmid H, Cohen CD, Draganovici D, Mandelbaum J, Nelson PJ, Grone HJ, Grone EF, Figel AM, Nossner E, Schlondorff D (2008) Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 74:37–46

    Article  PubMed  CAS  Google Scholar 

  45. Kurts C (2006) Dendritic cells: not just another cell type in the kidney, but a complex immune sentinel network. Kidney Int 70:412–414

    Article  PubMed  CAS  Google Scholar 

  46. Bethunaickan R, Berthier CC, Ramanujam M, Sahu R, Zhang W, Sun Y, Bottinger EP, Ivashkiv L, Kretzler M, Davidson A (2011) A unique hybrid renal mononuclear phagocyte activation phenotype in murine systemic lupus erythematosus nephritis. J Immunol:186:4994–5003

    Google Scholar 

  47. Ramanujam M, Davidson A (2008) Targeting of the immune system in systemic lupus erythematosus. Expert Rev Mol Med 10:e2

    Article  PubMed  Google Scholar 

  48. Singh RR, Saxena V, Zang S, Li L, Finkelman FD, Witte DP, Jacob CO (2003) Differential contribution of IL-4 and STAT6 vs STAT4 to the development of lupus nephritis. J Immunol 170:4818–4825

    PubMed  CAS  Google Scholar 

  49. Santiago ML, Fossati L, Jacquet C, Muller W, Izui S, Reininger L (1997) Interleukin-4 protects against a genetically linked lupus-like autoimmune syndrome. J Exp Med 185:65–70

    Article  PubMed  CAS  Google Scholar 

  50. Matsumoto K, Watanabe N, Akikusa B, Kurasawa K, Matsumura R, Saito Y, Iwamoto I, Saito T (2003) Fc receptor-independent development of autoimmune glomerulonephritis in lupus-prone MRL/lpr mice. Arthritis Rheum 48:486–494

    Article  PubMed  CAS  Google Scholar 

  51. Ehlers M, Fukuyama H, McGaha TL, Aderem A, Ravetch JV (2006) TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med 203:553–561

    Article  PubMed  CAS  Google Scholar 

  52. Wu X, Peng SL (2006) Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 54:336–342

    Article  PubMed  CAS  Google Scholar 

  53. Fu Y, Du Y, Mohan C (2007) Experimental anti-GBM disease as a tool for studying spontaneous lupus nephritis. Clin Immunol 124:109–118

    Article  PubMed  CAS  Google Scholar 

  54. Perry D, Sang A, Yin Y, Zheng YY, Morel L (2011) Murine models of systemic lupus erythematosus. J Biomed Biotechnol 2011:271694

    Article  PubMed  Google Scholar 

  55. Ramanujam M, Wang X, Huang W, Liu Z, Schiffer L, Tao H, Frank D, Rice J, Diamond B, Yu KO, Porcelli S, Davidson A (2006) Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 116:724–734

    Article  PubMed  CAS  Google Scholar 

  56. Rudofsky UH, Lawrence DA (1999) New Zealand mixed mice: a genetic systemic lupus erythematosus model for assessing environmental effects. Environ Health Perspect 107:713–721

    PubMed  Google Scholar 

  57. Ramanujam M, Davidson A (2008) BAFF blockade for systemic lupus erythematosus – will the promise be fulfilled? Immunol Rev 223:156–174

    Article  PubMed  CAS  Google Scholar 

  58. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    Article  PubMed  CAS  Google Scholar 

  59. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103:9970–9975

    Article  PubMed  CAS  Google Scholar 

  60. Haywood ME, Rogers NJ, Rose SJ, Boyle J, McDermott A, Rankin JM, Thiruudaian V, Lewis MR, Fossati-Jimack L, Izui S, Walport MJ, Morley BJ (2004) Dissection of BXSB lupus phenotype using mice congenic for chromosome 1 demonstrates that separate intervals direct different aspects of disease. J Immunol 173:4277–4285

    PubMed  CAS  Google Scholar 

  61. Akkerman A, Huang W, Wang X, Ramanujam M, Schiffer L, Madaio M, Factor SM, Davidson A (2004) CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice. Autoimmunity 37:445–451

    Article  PubMed  CAS  Google Scholar 

  62. Kahn P, Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio MP, Factor SM, Davidson A (2008) Prevention of murine antiphospholipid syndrome by BAFF blockade. Arthritis Rheum 58:2824–2834

    Article  PubMed  Google Scholar 

  63. Hang LM, Izui S, Dixon FJ (1981) (NZW × BXSB)F1 hybrid. A model of acute lupus and coronary vascular disease with myocardial infarction. J Exp Med 154:216–221

    Article  PubMed  CAS  Google Scholar 

  64. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    Article  PubMed  CAS  Google Scholar 

  65. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215

    Article  PubMed  CAS  Google Scholar 

  66. Menke J, Rabacal WA, Byrne KT, Iwata Y, Schwartz MM, Stanley ER, Schwarting A, Kelley VR (2009) Circulating CSF-1 promotes monocyte and macrophage phenotypes that enhance lupus nephritis. J Am Soc Nephrol 20:2581–2592

    Article  PubMed  CAS  Google Scholar 

  67. Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, James WG, Kitching AR, Morand EF (2006) Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol 177:5687–5696

    PubMed  CAS  Google Scholar 

  68. Schiffer L, Bethunaickan R, Ramanujam M, Huang W, Schiffer M, Tao H, Madaio MP, Bottinger EP, Davidson A (2008) Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J Immunol 180:1938–1947

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bethunaickan, R., Sahu, R., Davidson, A. (2012). Analysis of Renal Mononuclear Phagocytes in Murine Models of SLE. In: Perl, A. (eds) Autoimmunity. Methods in Molecular Biology, vol 900. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-720-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-720-4_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-719-8

  • Online ISBN: 978-1-60761-720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics