Skip to main content

Metabolic Engineering of Glyoxalase Pathway for Enhancing Stress Tolerance in Plants

  • Protocol
  • First Online:
Book cover Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

Abstract

Glyoxalase system consists of two enzymes glyoxalase I (Gly I) and glyoxalase II (Gly II). Gly I detoxifies methylglyoxal (MG), a cytotoxic byproduct of glycolysis, to S-lactoylglutathione (SLG) where it uses one molecule of reduced glutathione. Subsequently, SLG is converted to lactate by Gly II and one molecule of reduced glutathione is recycled back into the system. The level of MG, which is produced ubiquitously in all living organisms, is enhanced upon exposure to different abiotic stresses in plants. Overexpression of glyoxalase pathway genes in transgenic plants has been found to keep a check on the MG level under stress conditions, regulate glutathione homeostasis, and the transgenic plants are able to survive and grow under various abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seki, M., Umezawa, T., Urano, K., and Shinozaki, K. (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10, 296–302.

    Article  PubMed  CAS  Google Scholar 

  2. Atlante, A., de Bari, L., Valenti, D., Pizzuto, R., Paventi, G., and Passarella, S. (2005) Transport and metabolism of D-lactate in Jerusalem artichoke mitochondria. Biochim Biophys Acta 1708, 13–22.

    Article  PubMed  CAS  Google Scholar 

  3. Rhee, H., Murata, K., and Kimura, A. (1987) Molecular cloning of the Pseudomonas putida glyoxalase I gene in Escherichia coli. Biochem Biophys Res Commun 147, 831–838.

    Article  PubMed  CAS  Google Scholar 

  4. Thornalley, P.J. (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269, 1–11.

    PubMed  CAS  Google Scholar 

  5. Yadav, S.K., Singla-Pareek, S.L., Kumar, M., Pareek, A., Saxena, M., Sarin, N.B. et al. (2007) Characterization and functional validation of glyoxalase II from rice. Protein Expr Purif 51, 126–132.

    Article  PubMed  CAS  Google Scholar 

  6. Singla-Pareek, S.L., Reddy, M.K., and Sopory, S.K. (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Nat Acad Sci USA 100,14672–14677.

    Article  PubMed  CAS  Google Scholar 

  7. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., and Sopory, S.K. (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Trans Res 17, 171–180.

    Article  CAS  Google Scholar 

  8. Smits, M.M. and Johnson, M.A. (1981) Methylglyoxal: enzyme distributions relative to its presence in Douglas-fir needles and absence in Douglas-fir needle callus. Arch Biochem Biophy 208, 431–439.

    Article  CAS  Google Scholar 

  9. Chakravarty, T.N. and Sopory, S.K. (1990) Light stimulated cell proliferation and glyoxalase I activity in callus cultures of Amaranthus paniculatus. In Progress in Plant Cellular and Molecular Biology. (Nijkamp, H.J.J., Van-derplas, L.H.W., and Asrtrijk, V.J., eds.), Kluwer Academic, Dordrecht, the Netherland, pp. 379–384.

    Chapter  Google Scholar 

  10. Norton, S.J., Talesa, V., Yuan, W.J., and Principato, G.B. (1990) Glyoxalase I and glyoxalase II from Aloe vera: purification, characterization and comparison with animal glyoxalases. Biochem Int 22, 411–418.

    Article  PubMed  CAS  Google Scholar 

  11. Seraj, Z.I., Sarker, A.B., and Islam, A.S. (1992) Plant regeneration in a jute species (C. capsularis) and its possible relationship with glyoxalase-I. Plant Cell Rep 12, 29–33.

    Article  CAS  Google Scholar 

  12. Deswal, R., Chakaravarty, T.N., and Sopory, S.K. (1993) The glyoxalase system in higher plants: regulation in growth and differentiation. Biochem Soc Trans 21, 527–530.

    PubMed  CAS  Google Scholar 

  13. Paulus, C., Köllner, B., and Jacobsen, H.J. (1993) Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta 189, 561–566.

    Article  PubMed  CAS  Google Scholar 

  14. Espartero, J., Sanchez-Aguayo, I. and Pardo, J.M. (1995) Molecular characterization of glyoxalase I from a higher plant: upregulation by stress. Plant Mol. Biol. 29, 1223-1233.

    Article  PubMed  CAS  Google Scholar 

  15. Deswal, R. and Sopory, S.K. (1998) Biochemical and immunochemical characterization of Brassica juncea glyoxalase I. Phytochemistry 49, 2245–2253.

    Article  PubMed  CAS  Google Scholar 

  16. Walz, C., Giavalisco, P., Schad, M., Juenger, M., Klose, J., and Kehr, J. (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65, 1795–1804.

    Article  PubMed  CAS  Google Scholar 

  17. Bauw, G., Nielsen, H.V., Emmersen, J., Nielsen, K.L., Jørgensen, M., and Welinder, K.G. (2006) Patatins, Kunitz protease inhibitors and other major proteins in tuber of potato cv. Kuras. FEBS J 273, 3569–3584.

    Article  PubMed  CAS  Google Scholar 

  18. Veena, Reddy, V.S., and Sopory, S.K. (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17, 385–395 .

    Article  PubMed  CAS  Google Scholar 

  19. Skipsey, M., Andrews, C.J., Townson, J.K., Jepson, I., and Edwards, R. (2000) Cloning and characterization of glyoxalase I from soybean. Arch Biochem Biophys 374, 261–268.

    Article  PubMed  CAS  Google Scholar 

  20. Cordell, P.A., Futers, T.S., Grant, P.J., and Pease, R.J. (2004) The human hydroxyacylglutathione hydrolase (HAGH) gene encodes both cytosolic and mitochondrial forms of glyoxalase II. J Biol Chem 279, 28653–2866.

    Google Scholar 

  21. Bito, A., Haider, M., Hadler I., and Breitenbach, M. (1997) Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J Biol Chem 272, 690–694.

    Article  Google Scholar 

  22. Irsch, T. and Krauth-Siegel, R.L. (2004) Glyoxalase II of African trypanosomes is trypanothione-dependent. J Biol Chem 279, 22209–22217.

    Article  PubMed  CAS  Google Scholar 

  23. Talesa, V., Rosi, G., Contenti, S., Mangiabene, C., Lupattelli, M., Norton, S.J. et al. (1990) Presence of glyoxalase II in mitochondria from spinach leaves: comparison with the enzyme from cytosol. Biochem. Int. 22, 1115-1120.

    PubMed  CAS  Google Scholar 

  24. Maiti, M.K., Krishnasamy, S., Owen, H.A., and Makaroff, C.A. (1997) Molecular characterization of glyoxalase II from Arabidopsis thaliana. Plant Mol Biol 35, 471–481.

    Article  PubMed  CAS  Google Scholar 

  25. Ridderstrom, M. and Mannervik, B. (1997) Molecular cloning and characterization of the thiolesterase glyoxalase II from Arabidopsis thaliana. Biochem J 322, 449–454.

    PubMed  Google Scholar 

  26. Saxena, M., Bisht, R., Roy, S.D., Sopory, S.K., and Bhalla-Sarin, N. (2005) Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA. Biochem Biophys Res Commun 336, 813–819.

    Article  PubMed  CAS  Google Scholar 

  27. Norton, S.J., Principato, G.B., Talesa, V., Lupattelli, M., and Rosi, G. (1989) Glyoxalase II from Zea mays: properties and inhibition study of the enzyme purified by use of a new affinity ligand. Enzyme 42,189–196.

    PubMed  CAS  Google Scholar 

  28. Yadav, S.K., Singla-Pareek, S.L., Reddy, M.K., and Sopory, S.K. (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett 579, 6265–6271.

    Article  PubMed  CAS  Google Scholar 

  29. May, M.J. and Leaver, C.J. (1994) Arabidopsis thaliana c-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci USA 91,10059–10063.

    Article  PubMed  CAS  Google Scholar 

  30. Ullmann, P., Gondet, L., Potier, S., and Bach, T.J. (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236, 662–669.

    Article  PubMed  CAS  Google Scholar 

  31. Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53, 1283–1304.

    Article  PubMed  CAS  Google Scholar 

  32. Gomez, L.D., Noctor, G., Knight, M.R., and Foyer, C.H. (2004) Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55, 1851–1859

    Article  PubMed  CAS  Google Scholar 

  33. Bhomkar, P., Upadhyay. C.P., Saxena, M., Muthusamy. A., Prakash, N. S., Pooggin, M., et al. (2008) Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Mol Breed 22,169–181.

    Article  CAS  Google Scholar 

  34. Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1972) Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Manila.

    Google Scholar 

  35. Ramaswamy, O., Guha-Mukherjee, S., and Sopory, S.K. (1983) Presence of glyoxalase I in pea. Biochem Int 7, 307–318.

    CAS  Google Scholar 

  36. Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K., and Sopory, S.K. (2005) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337, 61–67.

    Article  PubMed  CAS  Google Scholar 

  37. Cordeiro, C. and Freire, A.P. (1996) Methylglyoxal assay in cells as 2-methylquinoxalineusing 1,2-diaminobenzene as a derivatizing reagents. Anal Biochem 234, 221–224.

    Article  PubMed  CAS  Google Scholar 

  38. Tietze F. (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27, 502–522.

    Article  PubMed  CAS  Google Scholar 

  39. Griffith, O.W. (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106, 207–212.

    Article  PubMed  CAS  Google Scholar 

  40. Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V. et al. (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99, 15898–15903.

    Article  CAS  Google Scholar 

  41. Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24, 1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by internal grants of ICGEB, New Delhi, and Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Mustafiz, A., Sahoo, K.K., Singla-Pareek, S.L., Sopory, S.K. (2010). Metabolic Engineering of Glyoxalase Pathway for Enhancing Stress Tolerance in Plants. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics