Skip to main content

Difference Gel Electrophoresis as a Tool to Discover Stress-Regulated Proteins

  • Protocol
  • First Online:
Plant Stress Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 639))

  • 6946 Accesses

Abstract

Two-dimensional electrophoresis is a powerful tool to explore the plant proteome and to unravel changes in protein expression between samples. However, the acquisition of images on which thousands of spots may be resolved has some weak points, as always pointed out by scientists working with gel-free techniques, such as the lack of reproducibility. Nowadays, this inconvenience can be bypassed by the use of a technique known as “difference gel electrophoresis” or DIGE. This technique requires the labelling of proteins by fluorochromes before their separation on 2DE gels. This technique may be applied to a wide array of plant stress studies. Providing accurate quantitative results, differentially abundant spots are usually subjected to tryptic digestion and identified using electrospray ionization, matrix-assisted laser desorption/ionization-time of flight-MS and/or tandem MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkins, M.R., et al. (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Gene Eng Rev 13, 19–50.

    Google Scholar 

  2. The Arabidopsis Genome Initiative (2001) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  3. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436, 793–799.

    Article  Google Scholar 

  4. Tuskan, G.A., et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  5. Jorrin, J.V., Maldonado, A.M., and Castillejo, M.A. (2007) Plant proteome analysis: a 2006 update. Proteomics 7, 2947–2962.

    Article  PubMed  CAS  Google Scholar 

  6. Skynner, H., et al. (2002) Alterations of stress related proteins in genetically altered mice revealed by two-dimensional differential in-gel electrophoresis analysis. Proteomics 2, 1018–1025.

    Article  PubMed  CAS  Google Scholar 

  7. Alban, A., et al. (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3, 36–44.

    Article  PubMed  CAS  Google Scholar 

  8. Saravanan, R.S. and Rose, J.K.C. (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4, 2522–2532.

    Article  PubMed  CAS  Google Scholar 

  9. Carpentier, S.C., et al. (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5, 2497–2507.

    Article  PubMed  CAS  Google Scholar 

  10. Delaplace, P., et al. (2006) Potato tuber proteomics: comparison of two complementary extraction methods designed for 2-DE of acidic proteins. Proteomics 6, 6494–6497.

    Article  PubMed  CAS  Google Scholar 

  11. Rolland, N., et al. (2006) A versatile method for deciphering plant membrane proteomes. J Exp Bot 57, 1579–1589.

    Article  PubMed  CAS  Google Scholar 

  12. Zabrouskov, V., Giacomelli, L., van Wijk, K.J., and McLafferty, F.W. (2003) A new approach for plant proteomics: characterization of chloroplast proteins of Arabidopsis thaliana by top-down mass spectrometry. Mol Cell Proteomics 2, 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  13. Keech, O., Dizengremel, P., and Gardeström, P. (2005) Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol Plant 124, 403–409.

    Article  CAS  Google Scholar 

  14. Fenselau, C. (2007) A review of quantitative methods for proteomic studies. J Chromatogr B 855, 14–20.

    Article  CAS  Google Scholar 

  15. Gottlieb, D.M., Schultz, J., Bruun, S.W., Jacobsen, S., and Sondergaard, I. (2004) Multivariate approaches in plant science. Phytochemistry 65, 1531–1548.

    Article  PubMed  CAS  Google Scholar 

  16. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  17. Baginsky, S. (2009) Plant proteomics: concepts, applications, and novel strategies for data interpretation. Mass Spectr Rev 28, 93–120.

    Article  CAS  Google Scholar 

  18. Glinski, M. and Weckwerth, W. (2006) The role of mass spectrometry in plant systems biology. Mass Spectr Rev 25, 173–214.

    Article  CAS  Google Scholar 

  19. Carpentier, S.C., et al. (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectr Rev 27, 354–377.

    Article  CAS  Google Scholar 

  20. Reisinger, V. and Eichacker, L.A. (2007) How to analyze protein complexes by 2D Blue Native SDS-PAGE. Proteomics 7 (S1), 6–16.

    Article  PubMed  Google Scholar 

  21. Reisinger, V. and Eichacker, L.A. (2008) Solubilization of membrane protein complexes for blue native PAGE. J Proteom 71, 277–283.

    Article  CAS  Google Scholar 

  22. Braun, R.J., Kinkl, N., Beer, M., and Ueffing, M. (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389, 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  23. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Renaut, J. (2010). Difference Gel Electrophoresis as a Tool to Discover Stress-Regulated Proteins. In: Sunkar, R. (eds) Plant Stress Tolerance. Methods in Molecular Biology, vol 639. Humana Press. https://doi.org/10.1007/978-1-60761-702-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-702-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-701-3

  • Online ISBN: 978-1-60761-702-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics