Skip to main content

Targeting Drug Transporters – Combining In Silico and In Vitro Approaches to Predict In Vivo

  • Protocol
  • First Online:
Book cover Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

Transporter proteins are expressed throughout the human body in different vital organs. They play an important role to various extents in determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of therapeutic molecules. Over the past decade, numerous drug transporters have been cloned and considerable progress has been made toward understanding the molecular characteristics of individual transporters. In this chapter several in vitro and in silico techniques are described with applications to understand transporter behavior. These include employing new techniques to rapidly identify novel ligands for transporters. Ultimately these methods should lead to a greater overall appreciation of the role of transporters in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderle, P., Huang, Y., and Sadee, W. (2004) Intestinal membrane transport of drugs and nutrients: genomics of membrane transporters using expression microarrays. Eur. J. Pharm. Sci. 21, 17–24.

    Article  CAS  PubMed  Google Scholar 

  2. Hediger, M. A., Romero, M. F., Peng, J. B., Rolfs, A., Takanaga, H., and Bruford, E. A. (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Introduction. Pflugers Arch. 447, 465–-468.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, E. Y., Phelps, M. A., Cheng, C., Ekins, S., and Swaan, P. W. (2002) Modeling of active transport systems. Adv. Drug. Deliv. Rev. 54, 329–354.

    Article  CAS  PubMed  Google Scholar 

  4. Ware, J. A. (2006) Membrane transporters in drug discovery and development: A new mechanistic ADME era. Mol. Pharm. 3, 1–2.

    Article  CAS  PubMed  Google Scholar 

  5. Venter, J. C., Adams, M. D., and Others. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, A. C., Coleman, R. G., Smyth, K. T., Cao, Q., Soulard, P., Caffrey, D. R., Salzberg, A. C., and Huang, E. S. (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol. 25, 71–75.

    Article  PubMed  CAS  Google Scholar 

  7. Sugiyama, Y. (2005) Druggability: selecting optimized drug candidates. Drug Discov. Today 10, 1577–1579.

    Article  PubMed  Google Scholar 

  8. Mizuno, N., Niwa, T., Yotsumoto, Y., and Sugiyama, Y. (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol. Rev. 55, 425–461.

    Article  CAS  PubMed  Google Scholar 

  9. Isaji, M. (2007) Sodium-glucose cotransporter inhibitors for diabetes. Curr. Opin. Investig. Drugs 8, 285–292.

    CAS  PubMed  Google Scholar 

  10. Handlon, A. (2005) Sodium glucose co-transporter 2 (SGLT2) inhibitors as potential antidiabetic agents. Expert. Opin. Ther. Patients 15, 1531–1540.

    Article  CAS  Google Scholar 

  11. Castaneda, F., Burse, A., Boland, W., and Kinne, R. K. (2007) Thioglycosides as inhibitors of hSGLT1 and hSGLT2: potential therapeutic agents for the control of hyperglycemia in diabetes. Int. J. Med. Sci. 4, 131–139.

    CAS  PubMed  Google Scholar 

  12. Katsuno, K., Fujimori, Y., Takemura, Y., Hiratochi, M., Itoh, F., Komatsu, Y., Fujikura, H., and Isaji, M. (2007) Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J. Pharmacol. Exp. Ther. 320, 323–330.

    Article  CAS  PubMed  Google Scholar 

  13. Cundy, K. C., Branch, R., Chernov-Rogan, T., Dias, T., Estrada, T., Hold, K., Koller, K., Liu, X., Mann, A., Panuwat, M., Raillard, S. P., Upadhyay, S., Wu, Q. Q., Xiang, J. N., Yan, H., Zerangue, N., Zhou, C. X., Barrett, R. W., and Gallop, M. A. (2004) XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J. Pharmacol. Exp. Ther. 311, 315–323.

    Article  CAS  PubMed  Google Scholar 

  14. Xenoport. (2006) Xenoport, Inc. http://www.xenoport.com.

  15. Amidon, G. L., and Walgreen, C. R., Jr. (1999) "5'-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter," Pharm. Res. 16, 175.

    Article  CAS  PubMed  Google Scholar 

  16. Thomsen, A. E., Christensen, M. S., Bagger, M. A., and Steffansen, B. (2004) Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1: comparison of in vivo bioavailability in rats and transport in Caco-2 cells. Eur. J. Pharm. Sci. 23, 319–325.

    Article  CAS  PubMed  Google Scholar 

  17. Sugawara, M., Huang, W., Fei, Y. J., Leibach, F. H., Ganapathy, V., and Ganapathy, M. E. (2000) Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. J. Pharm. Sci. 89, 781–789.

    Article  CAS  PubMed  Google Scholar 

  18. Granero, G. E., and Amidon, G. L. (2006) Stability of valacyclovir: implications for its oral bioavailability. Int. J. Pharm 317, 14–18.

    Article  CAS  PubMed  Google Scholar 

  19. Bahadduri, P. M., D'Souza, V. M., Pinsonneault, J. K., Sadee, W., Bao, S., Knoell, D. L., and Swaan, P. W. (2005) Functional characterization of the peptide transporter PEPT2 in primary cultures of human upper airway epithelium. Am. J. Respir. Cell Mol. Biol. 32, 319–325.

    Article  CAS  PubMed  Google Scholar 

  20. Ganapathy, V., and Miyauchi, S. (2005) Transport systems for opioid peptides in mammalian tissues. Aaps. J. 7, E852–856.

    Google Scholar 

  21. Shen, H., Keep, R. F., Hu, Y., and Smith, D. E. (2005) PEPT2 (Slc15a2)-mediated unidirectional transport of cefadroxil from cerebrospinal fluid into choroid plexus. J. Pharmacol. Exp. Ther. 315, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  22. Shen, H., Ocheltree, S. M., Hu, Y., Keep, R. F., and Smith, D. E. (2007) Impact of genetic knockout of PEPT2 on cefadroxil pharmacokinetics, renal tubular reabsorption, and brain penetration in mice. Drug. Metab. Dispos. 35, 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez, D. E., Covitz, K. M., Sadee, W., and Mrsny, R. J. (1998) An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res. 58, 519–525.

    CAS  PubMed  Google Scholar 

  24. Nakanishi, T., Tamai, I., Takaki, A., and Tsuji, A. (2000) Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int. J. Cancer 88, 274–280.

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki, M., Suzuki, H., Ito, K., Abe, T., and Sugiyama, Y. (2002) Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and Multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277, 6497–6503.

    Article  CAS  PubMed  Google Scholar 

  26. Nakai, D., Nakagomi, R., Furuta, Y., Tokui, T., Abe, T., Ikeda, T., and Nishimura, K. (2001) Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J. Pharmacol. Exp. Ther. 297, 861–867.

    CAS  PubMed  Google Scholar 

  27. Ballestero, M. R., Monte, M. J., Briz, O., Jimenez, F., Gonzalez-San Martin, F., and Marin, J. J. (2006) Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem. Pharmacol. 72, 729–738.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, J. H. (2003) Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv. Drug Deliv. Rev. 55, 53–81.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, J., and Raymond, K. (2006) Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann. Clin. Microbiol. Antimicrob. 5, 3.

    Article  PubMed  CAS  Google Scholar 

  30. Kuppens, I. E., Breedveld, P., Beijnen, J. H., and Schellens, J. H. (2005) Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest. 23, 443–464.

    CAS  PubMed  Google Scholar 

  31. Kemper, E. M., van Zandbergen, A. E., Cleypool, C., Mos, H. A., Boogerd, W., Beijnen, J. H., and van Tellingen, O. (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin. Cancer Res. 9, 2849–2855.

    CAS  PubMed  Google Scholar 

  32. Nekhayeva, I. A., Nanovskaya, T. N., Hankins, G. D., and Ahmed, M. S. (2006) Role of human placental efflux transporter P-glycoprotein in the transfer of buprenorphine, levo-alpha-acetylmethadol, and paclitaxel. Am. J. Perinatol. 23, 423–430.

    Article  PubMed  Google Scholar 

  33. Bardelmeijer, H. A., Ouwehand, M., Beijnen, J. H., Schellens, J. H., and van Tellingen, O. (2004) Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest. New Drugs 22, 219–229.

    Article  CAS  PubMed  Google Scholar 

  34. Kuppens, I. E., Witteveen, E. O., Jewell, R. C., Radema, S. A., Paul, E. M., Mangum, S. G., Beijnen, J. H., Voest, E. E., and Schellens, J. H. (2007) A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin. Cancer Res. 13, 3276–3285.

    Article  CAS  PubMed  Google Scholar 

  35. Weiss, J., Rose, J., Storch, C. H., Ketabi-Kiyanvash, N., Sauer, A., Haefeli, W. E., and Efferth, T. (2007) Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J. Antimicrob. Chemother. 59, 238–245.

    Article  CAS  PubMed  Google Scholar 

  36. Bauer, S., Stormer, E., Johne, A., Kruger, H., Budde, K., Neumayer, H. H., Roots, I., and Mai, I. (2003) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John's wort in renal transplant patients. Br. J. Clin. Pharmacol. 55, 203–211.

    Article  CAS  PubMed  Google Scholar 

  37. Pawarode, A., Shukla, S., Minderman, H., Fricke, S. M., Pinder, E. M., O'Loughlin, K. L., Ambudkar, S. V., and Baer, M. R. (2007) Differential effects of the immunosuppressive agents cyclosporin A, tacrolimus and sirolimus on drug transport by multidrug resistance proteins. Cancer Chemother. Pharmacol. 60, 179–188.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz, U. I., Hanso, H., Oertel, R., Miehlke, S., Kuhlisch, E., Glaeser, H., Hitzl, M., Dresser, G. K., Kim, R. B., and Kirch, W. (2007) Induction of intestinal P-glycoprotein by St John's wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther. 81, 669–678.

    Article  CAS  PubMed  Google Scholar 

  39. Bajorath, J. (2002) Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1, 882–894.

    Article  CAS  PubMed  Google Scholar 

  40. Chang, C., Bahadduri, P. M., Polli, J. E., Swaan, P. W., and Ekins, S. (2006) Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos. 34, 1976–1984.

    Article  CAS  PubMed  Google Scholar 

  41. Kerns, E. H., and Di, L. (2003) Pharmaceutical profiling in drug discovery. Drug Discov. Today 8, 316–323.

    Article  CAS  PubMed  Google Scholar 

  42. Ekins, S., Johnston, J. S., Bahadduri, P., D'Souza, V. M., Ray, A., Chang, C., and Swaan, P. W. (2005) In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors. Pharm. Res. 22, 512–517.

    Article  CAS  PubMed  Google Scholar 

  43. Han, H. K., Oh, D. M., and Amidon, G. L. (1998) Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm. Res. 15, 1382–1386.

    Article  CAS  PubMed  Google Scholar 

  44. Han, H. K., Rhie, J. K., Oh, D. M., Saito, G., Hsu, C. P., Stewart, B. H., and Amidon, G. L. (1999) CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitro model for peptidomimetic drugs. J. Pharm. Sci. 88, 347–350.

    Article  CAS  PubMed  Google Scholar 

  45. Surendran, N., Covitz, K. M., Han, H., Sadee, W., Oh, D. M., Amidon, G. L., Williamson, R. M., Bigge, C. F., and Stewart, B. H. (1999) Evidence for overlapping substrate specificity between large neutral amino acid (LNAA) and dipeptide (hPEPT1) transporters for PD 158473, an NMDA antagonist. Pharm. Res. 16, 391–395.

    Article  CAS  PubMed  Google Scholar 

  46. Banerjee, A., and Swaan, P. W. (2006) Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45, 943–953.

    Article  CAS  PubMed  Google Scholar 

  47. Chang, C., and Swaan, P. W. (2006) Computational approaches to modeling drug transporters. Eur. J. Pharm. Sci. 27, 411–424.

    Article  CAS  PubMed  Google Scholar 

  48. Polli, J. W., Wring, S. A., Humphreys, J. E., Huang, L., Morgan, J. B., Webster, L. O., and Serabjit-Singh, C. S. (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299, 620–628.

    CAS  PubMed  Google Scholar 

  49. Tiberghien, F., and Loor, F. (1996) Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs 7, 568–578.

    Article  CAS  PubMed  Google Scholar 

  50. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., and Gottesman, M. M. (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39, 361–398.

    Article  CAS  PubMed  Google Scholar 

  51. Tang, F., Ouyang, H., Yang, J. Z., and Borchardt, R. T. (2004) Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCK-MDR1 cell monolayers. J. Pharm. Sci. 93, 1185–1194.

    Article  CAS  PubMed  Google Scholar 

  52. Kim, M., Turnquist, H., Jackson, J., Sgagias, M., Yan, Y., Gong, M., Dean, M., Sharp, J. G., and Cowan, K. (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 8, 22–28.

    CAS  PubMed  Google Scholar 

  53. Scharenberg, C. W., Harkey, M. A., and Torok-Storb, B. (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512.

    Article  CAS  PubMed  Google Scholar 

  54. Robey, R. W., Honjo, Y., van de Laar, A., Miyake, K., Regis, J. T., Litman, T., and Bates, S. E. (2001) A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim. Biophys. Acta 1512, 171–182.

    Article  CAS  PubMed  Google Scholar 

  55. Wang, E. J., Casciano, C. N., Clement, R. P., and Johnson, W. W. (2003) Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm. Res. 20, 537–544.

    Article  CAS  PubMed  Google Scholar 

  56. Chang, C., Ekins, S., Bahadduri, P., and Swaan, P. W. (2006) Pharmacophore-based discovery of ligands for drug transporters. Adv. Drug Deliv. Rev. 58, 1431–1450.

    Article  CAS  PubMed  Google Scholar 

  57. Balimane, P. V., Patel, K., Marino, A., and Chong, S. (2004) Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. Eur. J. Pharm. Biopharm. 58, 99–105.

    Article  CAS  PubMed  Google Scholar 

  58. Marino, A. M., Yarde, M., Patel, H., Chong, S., and Balimane, P. V. (2005) Validation of the 96 well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds. Int. J. Pharm. 297, 235–241.

    CAS  PubMed  Google Scholar 

  59. Hidalgo, I. J. (1996) Cultured Intestinal Epithelial Cell Models, Plenum Press, New York.

    Google Scholar 

  60. Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., and Grove, J. R. (1999) MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci. 88, 28–33.

    Article  CAS  PubMed  Google Scholar 

  61. Yamazaki, M., Neway, W. E., Ohe, T., Chen, I., Rowe, J. F., Hochman, J. H., Chiba, M., and Lin, J. H. (2001) In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296, 723–735.

    CAS  PubMed  Google Scholar 

  62. Tang, F., Horie, K., and Borchardt, R. T. (2002) Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm. Res. 19, 773–779.

    Article  CAS  PubMed  Google Scholar 

  63. Hidalgo, I. J., Raub, T. J. and Borchardt, R. T. (1989) Characterization of the Human Colon Carcinoma Cell Line (Caco-2) as a model system for Intestinal Epithelial Permeability. Gastroenterology 96, 736–749.

    CAS  PubMed  Google Scholar 

  64. Sambuy, Y., De Angelis, I., Ranaldi, G., Scarino, M. L., Stammati, A., and Zucco, F. (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21, 1–26.

    Article  CAS  PubMed  Google Scholar 

  65. Hunter, J., Jepson, M. A., Tsuruo, T., Simmons, N. L., and Hirst, B. H. (1993) Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. Kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268, 14991–14997.

    CAS  PubMed  Google Scholar 

  66. Videmann, B., Tep, J., Cavret, S., and Lecoeur, S. (2007) Epithelial transport of deoxynivalenol: Involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). Food Chem. Toxicol.

    Google Scholar 

  67. Nakamura, T., Sakaeda, T., Ohmoto, N., Tamura, T., Aoyama, N., Shirakawa, T., Kamigaki, T., Nakamura, T., Kim, K. I., Kim, S. R., Kuroda, Y., Matsuo, M., Kasuga, M., and Okumura, K. (2002) Real-time quantitative polymerase chain reaction for MDR1, MRP1, MRP2, and CYP3A-mRNA levels in Caco-2 cell lines, human duodenal enterocytes, normal colorectal tissues, and colorectal adenocarcinomas. Drug Metab. Dispos. 30, 4–6.

    Article  CAS  PubMed  Google Scholar 

  68. Irie, M., Terada, T., Tsuda, M., Katsura, T., and Inui, K. (2006) Prediction of glycylsarcosine transport in Caco-2 cell lines expressing PEPT1 at different levels. Pflugers Arch. 452, 64–70.

    Article  CAS  PubMed  Google Scholar 

  69. Calcagno, A. M., Ludwig, J. A., Fostel, J. M., Gottesman, M. M., and Ambudkar, S. V. (2006) Comparison of drug transporter levels in normal colon, colon cancer, and Caco-2 cells: impact on drug disposition and discovery. Mol. Pharm. 3, 87–93.

    Article  CAS  PubMed  Google Scholar 

  70. Artursson, P., Palm, K., and Luthman, K. (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46, 27–43.

    Article  CAS  PubMed  Google Scholar 

  71. Behrens, I., and Kissel, T. (2003) Do cell culture conditions influence the carrier-mediated transport of peptides in Caco-2 cell monolayers? Eur. J. Pharm. Sci. 19, 433–442.

    Article  CAS  PubMed  Google Scholar 

  72. Tang, F., Horie, K., and Borchardt, R. T. (2002) Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm. Res. 19, 765–772.

    Article  CAS  PubMed  Google Scholar 

  73. Lash, L. H., Putt, D. A., and Cai, H. (2006) Membrane transport function in primary cultures of human proximal tubular cells. Toxicology 228, 200–218.

    Article  CAS  PubMed  Google Scholar 

  74. Bachmeier, C. J., Trickler, W. J., and Miller, D. W. (2006) Comparison of drug efflux transport kinetics in various blood-brain barrier models. Drug Metab. Dispos. 34, 998–1003.

    CAS  PubMed  Google Scholar 

  75. Talluri, R. S., Katragadda, S., Pal, D., and Mitra, A. K. (2006) Mechanism of L-ascorbic acid uptake by rabbit corneal epithelial cells: evidence for the involvement of sodium-dependent vitamin C transporter 2. Curr. Eye Res. 31, 481–489.

    Article  CAS  PubMed  Google Scholar 

  76. Artursson, P. (1991) Cell cultures as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier Syst. 8, 305–330.

    CAS  PubMed  Google Scholar 

  77. Xia, C. Q., Milton, M. N., and Gan, L. S. (2007) Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr. Drug Metab. 8, 341–363.

    Article  CAS  PubMed  Google Scholar 

  78. Allen, J. D., van Loevezijn, A., Lakhai, J. M., van der Valk, M., van Tellingen, O., Reid, G., Schellens, J. H., Koomen, G. J., and Schinkel, A. H. (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther. 1, 417–425.

    CAS  PubMed  Google Scholar 

  79. Ramachandra, M., Ambudkar, S. V., Gottesman, M. M., Pastan, I., and Hrycyna, C. A. (1996) Functional characterization of a glycine 185-to-valine substitution in human P-glycoprotein by using a vaccinia-based transient expression system. Mol. Biol. Cell. 7, 1485–1498.

    CAS  PubMed  Google Scholar 

  80. Taguchi, Y., Yoshida, A., Takada, Y., Komano, T., and Ueda, K. (1997) Anti-cancer drugs and glutathione stimulate vanadate-induced trapping of nucleotide in multidrug resistance-associated protein (MRP). FEBS Lett. 401, 11–14.

    Article  CAS  PubMed  Google Scholar 

  81. Drueckes, P., Schinzel, R., and Palm, D. (1995) Photometric microtiter assay of inorganic phosphate in the presence of acid-labile organic phosphates. Anal. Biochem. 230, 173–177.

    Article  CAS  PubMed  Google Scholar 

  82. Sarkadi, B., Price, E. M., Boucher, R. C., Germann, U. A., and Scarborough, G. A. (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J. Biol. Chem. 267, 4854–4858.

    CAS  PubMed  Google Scholar 

  83. Chang, K. H., Lee, J. M., Jeon, H. K., and Chung, I. S. (2004) Improved production of recombinant tumstatin in stably transformed Trichoplusia ni BTI Tn 5B1-4 cells. Protein Expr. Purif. 35, 69–75.

    Article  CAS  PubMed  Google Scholar 

  84. Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) ATP hydrolysis by multidrug-resistance protein from Chinese hamster ovary cells. J. Bioenerg. Biomembr. 27, 31–36.

    Article  CAS  PubMed  Google Scholar 

  85. Ozvegy, C., Varadi, A., and Sarkadi, B. (2002) Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. J. Biol. Chem. 277, 47980–47990.

    Article  CAS  PubMed  Google Scholar 

  86. Promega. (http://www.promega.com/tbs/tb341/tb341.pdf).

  87. Lentz, K. A., Polli, J. W., Wring, S. A., Humphreys, J. E., and Polli, J. E. (2000) Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm. Res. 17, 1456–1460.

    Article  CAS  PubMed  Google Scholar 

  88. Tolle-Sander, S., Rautio, J., Wring, S., Polli, J. W., and Polli, J. E. (2003) Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm. Res. 20, 757–764.

    Article  CAS  PubMed  Google Scholar 

  89. Hillgren, K. M., Kato, A., and Borchardt, R.T. (1995) In vitro Systems for Studying Intestinal Drug Absorption. Med. Res. Revs. 15, 83–109.

    Article  CAS  Google Scholar 

  90. Zhang, L., Lin, G., Kovacs, B., Jani, M., Krajcsi, P., and Zuo, Z. (2007) Mechanistic study on the intestinal absorption and disposition of baicalein. Eur. J. Pharm. Sci. 31, 221–231.

    Article  PubMed  CAS  Google Scholar 

  91. Whittico, M. T., Hui, A. C., and Giacomini, K. M. (1991) Preparation of brush border membrane vesicles from bovine choroid plexus. J. Pharmacol. Methods 25, 215–227.

    Article  CAS  PubMed  Google Scholar 

  92. Meier, P. J., and Boyer, J. L. (1990) Preparation of basolateral (sinusoidal) and canalicular plasma membrane vesicles for the study of hepatic transport processes. Methods Enzymol. 192, 534–545.

    Article  CAS  PubMed  Google Scholar 

  93. Ushigome, F., Koyabu, N., Satoh, S., Tsukimori, K., Nakano, H., Nakamura, T., Uchiumi, T., Kuwano, M., Ohtani, H., and Sawada, Y. (2003) Kinetic analysis of P-glycoprotein-mediated transport by using normal human placental brush-border membrane vesicles. Pharm. Res. 20, 38–44.

    Article  CAS  PubMed  Google Scholar 

  94. Sata, R., Ohtani, H., Tsujimoto, M., Murakami, H., Koyabu, N., Nakamura, T., Uchiumi, T., Kuwano, M., Nagata, H., Tsukimori, K., Nakano, H., and Sawada, Y. (2005) Functional analysis of organic cation transporter 3 expressed in human placenta. J. Pharmacol. Exp. Ther. 315, 888–895.

    Article  CAS  PubMed  Google Scholar 

  95. Aanismaa, P., and Seelig, A. (2007) P-Glycoprotein kinetics measured in plasma membrane vesicles and living cells. Biochemistry 46, 3394–3404.

    Article  PubMed  CAS  Google Scholar 

  96. Jin, J., Shahi, S., Kang, H. K., van Veen, H. W., and Fan, T. P. (2006) Metabolites of ginsenosides as novel BCRP inhibitors. Biochem. Biophys. Res. Commun. 345, 1308–1314.

    Article  CAS  PubMed  Google Scholar 

  97. Hirano, M., Maeda, K., Hayashi, H., Kusuhara, H., and Sugiyama, Y. (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J. Pharmacol. Exp. Ther. 314, 876–882.

    Article  CAS  PubMed  Google Scholar 

  98. McRae, M. P., Lowe, C. M., Tian, X., Bourdet, D. L., Ho, R. H., Leake, B. F., Kim, R. B., Brouwer, K. L., and Kashuba, A. D. (2006) Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J. Pharmacol. Exp. Ther. 318, 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  99. Pak, Y., Emerick, R., Perry III, W., and KM, H. (2005) Use of Inside-out Membrane Vesicles to Characterize Substrates and Inhibitors of P-glycoprotein, in AAPS Workshop on Drug Transporters in ADME: From the Bench to the Bedside, AAPS, Parsippany, NJ.

    Google Scholar 

  100. Pouliot, J. F., L'Heureux, F., Liu, Z., Prichard, R. K., and Georges, E. (1997) Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem. Pharmacol. 53, 17–25.

    Article  CAS  PubMed  Google Scholar 

  101. Qian, Y. M., Grant, C. E., Westlake, C. J., Zhang, D. W., Lander, P. A., Shepard, R. L., Dantzig, A. H., Cole, S. P., and Deeley, R. G. (2002) Photolabeling of human and murine multidrug resistance protein 1 with the high affinity inhibitor [125I]LY475776 and azidophenacyl-[35S]glutathione. J. Biol. Chem. 277, 35225–35231.

    Article  CAS  PubMed  Google Scholar 

  102. Safa, A. R., Glover, C. J., Meyers, M. B., Biedler, J. L., and Felsted, R. L. (1986) Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells. J. Biol. Chem. 261, 6137–6140.

    CAS  PubMed  Google Scholar 

  103. van de Waterbeemd, H., and Gifford, E. (2003) ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192–204.

    Article  PubMed  CAS  Google Scholar 

  104. Ekins, S., Ecker, G.F., Chiba P. and Swaan, P.W. (2007) Future Directions for Drug Transporter Modeling. Xenobiotica. 37, 1152–1170.

    Article  CAS  PubMed  Google Scholar 

  105. Cramer, R. D., 3rd, Patterson, D. E., and Bunce, J. D. (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog. Clin. Biol. Res. 291, 161–165.

    CAS  PubMed  Google Scholar 

  106. Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I., and Pavlik, P. A. (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists, J. Comput. Aided Mol. Des. 7, 83–102.

    Article  CAS  PubMed  Google Scholar 

  107. Jones, G., Willett, P., and Glen, R. C. (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation, J. Comput. Aided. Mol. Des. 9, 532–549.

    Article  CAS  PubMed  Google Scholar 

  108. Clement, O. O. a. M., A.T. (2000) HipHop: Pharmacophore Based on Multiple common-feature alignments., IUL, San Diego.

    Google Scholar 

  109. Evans, D. A., Doman, T. N., Thorner, D. A., and Bodkin, M. J. (2007) 3D QSAR methods: Phase and Catalyst compared. J. Chem. Inf. Model. 47, 1248–1257.

    Article  CAS  PubMed  Google Scholar 

  110. Ekins, S., Kim, R. B., Leake, B. F., Dantzig, A. H., Schuetz, E. G., Lan, L. B., Yasuda, K., Shepard, R. L., Winter, M. A., Schuetz, J. D., Wikel, J. H., and Wrighton, S. A. (2002) Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol. Pharmacol. 61, 974–981.

    Article  CAS  PubMed  Google Scholar 

  111. Ekins, S., Kim, R. B., Leake, B. F., Dantzig, A. H., Schuetz, E. G., Lan, L. B., Yasuda, K., Shepard, R. L., Winter, M. A., Schuetz, J. D., Wikel, J. H., and Wrighton, S. A. (2002) Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol. 61, 964–973.

    Article  CAS  PubMed  Google Scholar 

  112. Bednarczyk, D., Ekins, S., Wikel, J. H., and Wright, S. H. (2003) Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol. Pharmacol. 63, 489–498.

    Article  CAS  PubMed  Google Scholar 

  113. Chang, C., Pang, K. S., Swaan, P. W., and Ekins, S. (2005) Comparative pharmacophore modeling of organic anion transporting polypeptides: a meta-analysis of rat Oatp1a1 and human OATP1B1. J. Pharmacol. Exp. Ther. 314, 533–541.

    Article  CAS  PubMed  Google Scholar 

  114. Suhre, W. M., Ekins, S., Chang, C., Swaan, P. W., and Wright, S. H. (2005) Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol. Pharmacol. 67, 1067–1077.

    Article  CAS  PubMed  Google Scholar 

  115. Punta, M., Forrest, L. R., Bigelow, H., Kernytsky, A., Liu, J., and Rost, B. (2007) Membrane protein prediction methods. Methods 41, 460–474.

    Article  CAS  PubMed  Google Scholar 

  116. Chang, C. S., PW (2006) Computational Modeling of Drug Disposition, John Wiley & Sons, Inc., Hoboken, New Jersey.

    Google Scholar 

  117. Adamian, L., and Liang, J. (2006) Prediction of transmembrane helix orientation in polytopic membrane proteins, BMC Struct. Biol. 6, 13.

    Article  PubMed  CAS  Google Scholar 

  118. Campagna-Slater, V., and Weaver, D. F. (2007) Molecular modelling of the GABAA ion channel protein. J. Mol. Graph. Model. 25, 721–730.

    Article  CAS  PubMed  Google Scholar 

  119. Daniel, H. (2004) Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66, 361–384.

    Article  CAS  PubMed  Google Scholar 

  120. Covitz, K. M., Amidon, G. L., and Sadee, W. (1996) Human dipeptide transporter, hPEPT1, stably transfected into Chinese hamster ovary cells. Pharm. Res. 13, 1631–1634.

    Article  CAS  PubMed  Google Scholar 

  121. Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563–566.

    Article  CAS  PubMed  Google Scholar 

  122. Ganapathy, M. E., Huang, W., Wang, H., Ganapathy, V., and Leibach, F. H. (1998) Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246, 470–475.

    Article  CAS  PubMed  Google Scholar 

  123. Perkins, E. J., and Abraham, T. (2007) Pharmacokinetics, Metabolism, and Excretion of the PepT1-Targeted Prodrug (1S,2S,5R,6S)-2-[(2'S)-(2-Amino) propionyl]aminobicyclo[3.1.0.]hexen-2,6-di carboxylic acid (LY544344) in Rats and Dogs: Assessment of First-pass Bioactivation and Dose-Linearity. Drug Metab. Dispos.

    Google Scholar 

  124. Swaan, P. W., Bensman, T., Bahadduri, P. M., Hall, M. W., Sarkar, A., Bao, S., Khantwal, C. M., Ekins, S., and Knoell, D. L. (2008) Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am. J. Respir. Cell Mol. Biol. 39, 536–542.

    Article  CAS  PubMed  Google Scholar 

  125. Biegel, A., Gebauer, S., Brandsch, M., Neubert, K., and Thondorf, I. (2006) Structural requirements for the substrates of the H+/peptide cotransporter PEPT2 determined by three-dimensional quantitative structure-activity relationship analysis. J. Med. Chem. 49, 4286–4296.

    Article  CAS  PubMed  Google Scholar 

  126. Vig, B. S., Stouch, T. R., Timoszyk, J. K., Quan, Y., Wall, D. A., Smith, R. L., and Faria, T. N. (2006) Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J. Med. Chem. 49, 3636–3644.

    Article  CAS  PubMed  Google Scholar 

  127. Andersen, R., Jorgensen, F. S., Olsen, L., Vabeno, J., Thorn, K., Nielsen, C. U., and Steffansen, B. (2006) Development of a QSAR model for binding of tripeptides and tripeptidomimetics to the human intestinal di-/tripeptide transporter hPEPT1. Pharm. Res. 23, 483–492.

    Article  CAS  PubMed  Google Scholar 

  128. Crivori, P., Reinach, B., Pezzetta, D., and Poggesi, I. (2006) Computational models for identifying potential P-glycoprotein substrates and inhibitors. Mol. Pharm. 3, 33–44.

    Article  CAS  PubMed  Google Scholar 

  129. Raub, T. J. (2006) P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol. Pharm. 3, 3–25.

    Article  CAS  PubMed  Google Scholar 

  130. Cianchetta, G., Singleton, R. W., Zhang, M., Wildgoose, M., Giesing, D., Fravolini, A., Cruciani, G., and Vaz, R. J. (2005) A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR. J. Med. Chem. 48, 2927–2935.

    Article  CAS  PubMed  Google Scholar 

  131. Globisch, C., Pajeva, I. K., and Wiese, M. (2006) Structure-activity relationships of a series of tariquidar analogs as multidrug resistance modulators. Bioorg. Med. Chem. 14, 1588–1598.

    Article  CAS  PubMed  Google Scholar 

  132. Labrie, P., Maddaford, S. P., Fortin, S., Rakhit, S., Kotra, L. P., and Gaudreault, R. C. (2006) A comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of anthranilamide derivatives that are multidrug resistance modulators. J. Med. Chem. 49, 7646–7660.

    Article  CAS  PubMed  Google Scholar 

  133. Raad, I., Terreux, R., Richomme, P., Matera, E. L., Dumontet, C., Raynaud, J., and Guilet, D. (2006) Structure-activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein. Bioorg. Med. Chem. 14, 6979–6987.

    Article  CAS  PubMed  Google Scholar 

  134. Cabrera, M. A., Gonzalez, I., Fernandez, C., Navarro, C., and Bermejo, M. (2006) A topological substructural approach for the prediction of P-glycoprotein substrates. J. Pharm. Sci. 95, 589–606.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, L., Balimane, P. V., Johnson, S. R., and Chong, S. (2007) Development of an in silico model for predicting efflux substrates in Caco-2 cells. Int. J. Pharm. 343, 98–105.

    Article  CAS  PubMed  Google Scholar 

  136. Cartmell, J., Enoch, S., Krstajic, D., and Leahy, D. E. (2005) Automated QSPR through Competitive Workflow. J. Comput. Aided. Mol. Des. 19, 821–833.

    Article  CAS  PubMed  Google Scholar 

  137. de Cerqueira Lima, P., Golbraikh, A., Oloff, S., Xiao, Y., and Tropsha, A. (2006) Combinatorial QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 46, 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  138. Penzotti, J. E., Lamb, M. L., Evensen, E., and Grootenhuis, P. D. (2002) A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J. Med. Chem. 45, 1737–1740.

    Article  CAS  PubMed  Google Scholar 

  139. Vandevuer, S., Van Bambeke, F., Tulkens, P. M., and Prevost, M. (2006) Predicting the three-dimensional structure of human P-glycoprotein in absence of ATP by computational techniques embodying crosslinking data: insight into the mechanism of ligand migration and binding sites. Proteins 63, 466–478.

    Article  CAS  PubMed  Google Scholar 

  140. Badhan, R., and Penny, J. (2006) In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Eur. J. Med. Chem. 41, 285–295.

    Article  CAS  PubMed  Google Scholar 

  141. Sakurai, A., Onishi, Y., Hirano, H., Seigneuret, M., Obanayama, K., Kim, G., Liew, E. L., Sakaeda, T., Yoshiura, K., Niikawa, N., Sakurai, M., and Ishikawa, T. (2007) Quantitative structure–activity relationship analysis and molecular dynamics simulation to functionally validate nonsynonymous polymorphisms of human ABC transporter ABCB1 (P-glycoprotein/MDR1). Biochemistry 46, 7678–7693.

    Article  CAS  PubMed  Google Scholar 

  142. Chiba, P., Mihalek, I., Ecker, G. F., Kopp, S., and Lichtarge, O. (2006) Role of transmembrane domain/transmembrane domain interfaces of P-glycoprotein (ABCB1) in solute transport. Convergent information from photoaffinity labeling, site directed mutagenesis and in silico importance prediction. Curr. Med. Chem. 13, 793–805.

    Article  CAS  PubMed  Google Scholar 

  143. Rebitzer, S., Annibali, D., Kopp, S., Eder, M., Langer, T., Chiba, P., Ecker, G. F., and Noe, C. R. (2003) In silico screening with benzofurane- and benzopyrane-type MDR-modulators. Farmaco. 58, 185–191.

    Article  CAS  PubMed  Google Scholar 

  144. Langer, T., Eder, M., Hoffmann, R. D., Chiba, P., and Ecker, G. F. (2004) Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model. Arch. Pharm. (Weinheim) 337, 317–327.

    Article  CAS  Google Scholar 

  145. Kaiser, D., Terfloth, L., Kopp, S., Schulz, J., de Laet, R., Chiba, P., Ecker, G. F., and Gasteiger, J. (2007) Self-organizing maps for identification of new inhibitors of P-glycoprotein. J. Med. Chem. 50, 1698–1702.

    Article  CAS  PubMed  Google Scholar 

  146. Jedlitschky, G., Hoffmann, U., and Kroemer, H. K. (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert. Opin. Drug Metab. Toxicol. 2, 351–366.

    Article  CAS  PubMed  Google Scholar 

  147. Morrow, C. S., Peklak-Scott, C., Bishwokarma, B., Kute, T. E., Smitherman, P. K., and Townsend, A. J. (2006) Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol. Pharmacol. 69, 1499–1505.

    Article  CAS  PubMed  Google Scholar 

  148. Boumendjel, A., Baubichon-Cortay, H., Trompier, D., Perrotton, T., and Di Pietro, A. (2005) Anticancer multidrug resistance mediated by MRP1: recent advances in the discovery of reversal agents. Med. Res. Rev. 25, 453–472.

    Article  CAS  PubMed  Google Scholar 

  149. Young, A. M., Audus, K. L., Proudfoot, J., and Yazdanian, M. (2006) Tetrazole compounds: the effect of structure and pH on Caco-2 cell permeability. J. Pharm. Sci. 95, 717–725.

    Article  CAS  PubMed  Google Scholar 

  150. Mols, R., Deferme, S., and Augustijns, P. (2005) Sulfasalazine transport in in-vitro, ex-vivo and in-vivo absorption models: contribution of efflux carriers and their modulation by co-administration of synthetic nature-identical fruit extracts. J. Pharm. Pharmacol. 57, 1565–1573.

    Article  CAS  PubMed  Google Scholar 

  151. van Brussel, J. P., Oomen, M. A., Vossebeld, P. J., Wiemer, E. A., Sonneveld, P., and Mickisch, G. H. (2004) Identification of multidrug resistance-associated protein 1 and glutathione as multidrug resistance mechanisms in human prostate cancer cells: chemosensitization with leukotriene D4 antagonists and buthionine sulfoximine. BJU Int. 93, 1333–1338.

    Article  PubMed  CAS  Google Scholar 

  152. Ng, C., Xiao, Y. D., Lum, B. L., and Han, Y. H. (2005) Quantitative structure-activity relationships of methotrexate and methotrexate analogues transported by the rat multispecific resistance-associated protein 2 (rMrp2). Eur. J. Pharm. Sci. 26, 405–413.

    Article  CAS  PubMed  Google Scholar 

  153. Hirono, S., Nakagome, I., Imai, R., Maeda, K., Kusuhara, H., and Sugiyama, Y. (2005) Estimation of the three-dimensional pharmacophore of ligands for rat multidrug-resistance-associated protein 2 using ligand-based drug design techniques. Pharm. Res. 22, 260–269.

    Article  CAS  PubMed  Google Scholar 

  154. Yeboah, D., Sun, M., Kingdom, J., Baczyk, D., Lye, S. J., Matthews, S. G., and Gibb, W. (2006) Expression of breast cancer resistance protein (BCRP/ABCG2) in human placenta throughout gestation and at term before and after labor. Can. J. Physiol. Pharmacol. 84, 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  155. Choudhuri, S., and Klaassen, C. D. (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. 25, 231–259.

    Article  CAS  PubMed  Google Scholar 

  156. Breuzard, G., Piot, O., Angiboust, J. F., Manfait, M., Candeil, L., Del Rio, M., and Millot, J. M. (2005) Changes in adsorption and permeability of mitoxantrone on plasma membrane of BCRP/MXR resistant cells. Biochem. Biophys. Res. Commun. 329, 64–70.

    Article  CAS  Google Scholar 

  157. Honjo, Y., Hrycyna, C. A., Yan, Q. W., Medina-Perez, W. Y., Robey, R. W., van de Laar, A., Litman, T., Dean, M., and Bates, S. E. (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 61, 6635–6639.

    CAS  PubMed  Google Scholar 

  158. Doyle, L. A., and Ross, D. D. (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 22, 7340–7358.

    Article  PubMed  CAS  Google Scholar 

  159. Nagashima, S., Soda, H., Oka, M., Kitazaki, T., Shiozawa, K., Nakamura, Y., Takemura, M., Yabuuchi, H., Fukuda, M., Tsukamoto, K., and Kohno, S. (2006) BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother. Pharmacol. 58, 594–600.

    Article  CAS  PubMed  Google Scholar 

  160. Volk, E. L., and Schneider, E. (2003) Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Res. 63, 5538–5543.

    CAS  PubMed  Google Scholar 

  161. Rocchi, E., Khodjakov, A., Volk, E. L., Yang, C. H., Litman, T., Bates, S. E., and Schneider, E. (2000) The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem. Biophys. Res. Commun. 271, 42–46.

    Article  CAS  PubMed  Google Scholar 

  162. Maliepaard, M., van Gastelen, M. A., Tohgo, A., Hausheer, F. H., van Waardenburg, R. C., de Jong, L. A., Pluim, D., Beijnen, J. H., and Schellens, J. H. (2001) Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res. 7, 935–941.

    CAS  PubMed  Google Scholar 

  163. Pavek, P., Merino, G., Wagenaar, E., Bolscher, E., Novotna, M., Jonker, J. W., and Schinkel, A. H. (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J. Pharmacol. Exp. Ther. 312, 144–152.

    Article  CAS  PubMed  Google Scholar 

  164. Huisman, M. T., Chhatta, A. A., van Tellingen, O., Beijnen, J. H., and Schinkel, A. H. (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int. J. Cancer 116, 824–829.

    Article  CAS  PubMed  Google Scholar 

  165. Gupta, A., Zhang, Y., Unadkat, J. D., and Mao, Q. (2004) HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J. Pharmacol. Exp. Ther. 310, 334–341.

    Article  CAS  PubMed  Google Scholar 

  166. Saito, H., Hirano, H., Nakagawa, H., Fukami, T., Oosumi, K., Murakami, K., Kimura, H., Kouchi, T., Konomi, M., Tao, E., Tsujikawa, N., Tarui, S., Nagakura, M., Osumi, M., and Ishikawa, T. (2006) A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317, 1114–1124.

    Article  CAS  PubMed  Google Scholar 

  167. Kuhar, M. J., Ritz, M. C., and Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 14, 299–302.

    Article  CAS  PubMed  Google Scholar 

  168. Self, D. W., and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463–495.

    Article  CAS  PubMed  Google Scholar 

  169. Tomlinson, I. D., Mason, J. N., Blakely, R. D., and Rosenthal, S. J. (2006) High affinity inhibitors of the dopamine transporter (DAT): novel biotinylated ligands for conjugation to quantum dots. Bioorg. Med. Chem. Lett. 16, 4664–4667.

    Article  CAS  PubMed  Google Scholar 

  170. Cline, E. J., Terry, P., Carroll, F. I., Kuhar, M. J., and Katz, J. L. (1992) Stimulus generalization from cocaine to analogs with high in vitro affinity for dopamine uptake sites. Behav. Pharmacol. 3, 113–116.

    Article  CAS  PubMed  Google Scholar 

  171. Huang, X., and Zhan, C. G. (2007) How Dopamine Transporter Interacts with Dopamine: Insights from Molecular Modeling and Simulation. Biophys. J.

    Google Scholar 

  172. Wang, S., Sakamuri, S., Enyedy, I. J., Kozikowski, A. P., Deschaux, O., Bandyopadhyay, B. C., Tella, S. R., Zaman, W. A., and Johnson, K. M. (2000) Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity relationships, and behavioral pharmacological studies. J. Med. Chem. 43, 351–360.

    Article  CAS  PubMed  Google Scholar 

  173. FDA. (http://www.fda.gov/oc/initiatives/criticalpath/initiative.html) FDA’s Critical Path Initiative—Science Enhancing the Health and Well-Being of All Americans (2004).

  174. WHO. (2002) Waiver of In vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System, FDA Guidance for Industry, Federal Drug and Food Administration, Rockville, MD.

    Google Scholar 

  175. Blume, H. H., and Schug, B. S. (1999) The biopharmaceutics classification system (BCS): class III drugs - better candidates for BA/BE waiver? Eur. J. Pharm. Sci. 9, 117–121.

    Article  CAS  PubMed  Google Scholar 

  176. Polli, J. E., Yu, L. X., Cook, J. A., Amidon, G. L., Borchardt, R. T., Burnside, B. A., Burton, P. S., Chen, M. L., Conner, D. P., Faustino, P. J., Hawi, A. A., Hussain, A. S., Joshi, H. N., Kwei, G., Lee, V. H., Lesko, L. J., Lipper, R. A., Loper, A. E., Nerurkar, S. G., Polli, J. W., Sanvordeker, D. R., Taneja, R., Uppoor, R. S., Vattikonda, C. S., Wilding, I., and Zhang, G. (2004) Summary workshop report: biopharmaceutics classification system–implementation challenges and extension opportunities. J. Pharm. Sci. 93, 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  177. Wu, C. Y., and Benet, L. Z. (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22, 11–23.

    Article  CAS  PubMed  Google Scholar 

  178. Takagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L. X., and Amidon, G. L. (2006) A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 3, 631–643.

    Article  CAS  PubMed  Google Scholar 

  179. Khandelwal, A., Bahadduri, P. M., Chang, C., Polli, J. E., Swaan, P. W., and Ekins, S. (2007) Computational Models to Assign Biopharmaceutics Drug Disposition Classification from Molecular Structure. Pharm. Res.

    Google Scholar 

  180. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., and Obradovic, Z. (2001) Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59.

    Article  CAS  PubMed  Google Scholar 

  181. Romero, P. R., Zaidi, S., Fang, Y. Y., Uversky, V. N., Radivojac, P., Oldfield, C. J., Cortese, M. S., Sickmeier, M., LeGall, T., Obradovic, Z., and Dunker, A. K. (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl. Acad. Sci. U S A 103, 8390–8395.

    Article  CAS  PubMed  Google Scholar 

  182. Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O'Donovan, C., Redaschi, N., and Yeh, L. S. (2005) The Universal Protein Resource (UniProt). Nucleic. Acids Res. 33, D154–159.

    Google Scholar 

  183. Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., and Obradovic, Z. (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information, J. Bioinform. Comput. Biol. 3, 35–60.

    Article  CAS  PubMed  Google Scholar 

  184. Krasowski, M. D., Reschly, E. J., and Ekins, S. (2008) Intrinsic disorder in nuclear hormone receptors, J. Proteome. Res. 7, 4359–4372.

    Article  CAS  PubMed  Google Scholar 

  185. Bertilsson, G., Heidrich, J., Svensson, K., Asman, M., Jendeberg, L., Sydow-Backman, M., Ohlsson, R., Postlind, H., Blomquist, P., and Berkenstam, A. (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. U S A 95, 12208–12213.

    Article  CAS  PubMed  Google Scholar 

  186. Blumberg, B., and Evans, R. M. (1998) Orphan nuclear receptors–new ligands and new possibilities. Genes Dev. 12, 3149–3155.

    Article  CAS  PubMed  Google Scholar 

  187. Kliewer, S. A., Moore, J. T., Wade, L., Staudinger, J. L., Watson, M. A., Jones, S. A., McKee, D. D., Oliver, B. B., Willson, T. M., Zetterstrom, R. H., Perlmann, T., and Lehmann, J. M. (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82.

    Article  CAS  PubMed  Google Scholar 

  188. Synold, T. W., Dussault, I., and Forman, B. M. (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat. Med. 7, 584–590.

    Article  CAS  PubMed  Google Scholar 

  189. Staudinger, J., Liu, Y., Madan, A., Habeebu, S., and Klaassen, C. D. (2001) Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. 29, 1467–1472.

    CAS  PubMed  Google Scholar 

  190. Bleasby, K., Castle, J. C., Roberts, C. J., Cheng, C., Bailey, W. J., Sina, J. F., Kulkarni, A. V., Hafey, M. J., Evers, R., Johnson, J. M., Ulrich, R. G., and Slatter, J. G. (2006) Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36, 963–988.

    Article  CAS  PubMed  Google Scholar 

  191. Deng, R., Yang, D., Yang, J., and Yan, B. (2006) Oxysterol 22(R)-hydroxycholesterol induces the expression of the bile salt export pump through nuclear receptor farsenoid X receptor but not liver X receptor. J. Pharmacol. Exp. Ther. 317, 317–325.

    Article  CAS  PubMed  Google Scholar 

  192. Lee, H., Zhang, Y., Lee, F. Y., Nelson, S. F., Gonzalez, F. J., and Edwards, P. A. (2006) FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J. Lipid Res. 47, 201–214.

    Article  CAS  PubMed  Google Scholar 

  193. Guo, G. L., Staudinger, J., Ogura, K., and Klaassen, C. D. (2002) Induction of rat organic anion transporting polypeptide 2 by pregnenolone-16alpha-carbonitrile is via interaction with pregnane X receptor. Mol. Pharmacol. 61, 832–839.

    Article  CAS  PubMed  Google Scholar 

  194. Fleck, C., Schwertfeger, M., and Taylor, P. M. (2003) Regulation of renal amino acid (AA) transport by hormones, drugs and xenobiotics - a review. Amino Acids 24, 347–374.

    Article  CAS  PubMed  Google Scholar 

  195. Rothman, R. B., Ayestas, M. A., Dersch, C. M., and Baumann, M. H. (1999) Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 100, 869–875.

    CAS  PubMed  Google Scholar 

  196. Barabasi, A. L., and Oltvai, Z. N. (2004) Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113.

    Article  CAS  PubMed  Google Scholar 

  197. Apic, G., Ignjatovic, T., Boyer, S., and Russell, R. B. (2005) Illuminating drug discovery with biological pathways. FEBS Lett. 579, 1872–1877.

    Article  CAS  PubMed  Google Scholar 

  198. Huang, J. C., Sakata, T., Pfleger, L. L., Bencsik, M., Halloran, B. P., Bikle, D. D., and Nissenson, R. A. (2004) PTH differentially regulates expression of RANKL and OPG. J. Bone Miner. Res. 19, 235–244.

    Article  CAS  PubMed  Google Scholar 

  199. Shu, C., Shen, H., Hopfer, U., and Smith, D. E. (2001) Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab. Dispos. 29, 1307–1315.

    CAS  PubMed  Google Scholar 

  200. Mitsuoka, K., Kato, Y., Kubo, Y., and Tsuji, A. (2007) Functional expression of stereoselective metabolism of cephalexin by exogenous transfection of oligopeptide transporter PEPT1. Drug Metab. Dispos. 35, 356–362.

    Article  CAS  PubMed  Google Scholar 

  201. Launay-Vacher, V., Izzedine, H., Karie, S., Hulot, J. S., Baumelou, A., and Deray, G. (2006) Renal tubular drug transporters. Nephron. Physiol. 103, p97–106.

    Google Scholar 

  202. MacDougall, C., and Guglielmo, B. J. (2004) Pharmacokinetics of valaciclovir. J. Antimicrob. Chemother. 53, 899–901.

    Article  CAS  PubMed  Google Scholar 

  203. Shitara, Y., Hirano, M., Sato, H., and Sugiyama, Y. (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J. Pharmacol. Exp. Ther. 311, 228–236.

    Article  CAS  PubMed  Google Scholar 

  204. Kameyama, Y., Yamashita, K., Kobayashi, K., Hosokawa, M., and Chiba, K. (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15, 513–522.

    Article  CAS  PubMed  Google Scholar 

  205. Abe, T., Unno, M., Onogawa, T., Tokui, T., Kondo, T. N., Nakagomi, R., Adachi, H., Fujiwara, K., Okabe, M., Suzuki, T., Nunoki, K., Sato, E., Kakyo, M., Nishio, T., Sugita, J., Asano, N., Tanemoto, M., Seki, M., Date, F., Ono, K., Kondo, Y., Shiiba, K., Suzuki, M., Ohtani, H., Shimosegawa, T., Iinuma, K., Nagura, H., Ito, S., and Matsuno, S. (2001) LST-2, a human liver-specific organic anion transporter, determines methotrexate sensitivity in gastrointestinal cancers. Gastroenterology 120, 1689–1699.

    Article  CAS  PubMed  Google Scholar 

  206. Konig, J., Seithel, A., Gradhand, U., and Fromm, M. F. (2006) Pharmacogenomics of human OATP transporters. Naunyn. Schmiedebergs Arch. Pharmacol. 372, 432–443.

    Article  PubMed  CAS  Google Scholar 

  207. Mikkaichi, T., Suzuki, T., Tanemoto, M., Ito, S., and Abe, T. (2004) The organic anion transporter (OATP) family. Drug Metab. Pharmacokinet. 19, 171–179.

    Article  CAS  PubMed  Google Scholar 

  208. Masuda, S. (2003) Functional characteristics and pharmacokinetic significance of kidney-specific organic anion transporters, OAT-K1 and OAT-K2, in the urinary excretion of anionic drugs. Drug Metab. Pharmacokinet. 18, 91–103.

    Article  CAS  PubMed  Google Scholar 

  209. Kaler, G., Truong, D. M., Khandelwal, A., Nagle, M., Eraly, S. A., Swaan, P. W., and Nigam, S. K. (2007) Structural variation governs substrate specificity for organic anion transporters (oat) homologs: potential remote sensing by oat family members, J. Biol. Chem.

    Google Scholar 

  210. Eraly, S. A., Bush, K. T., Sampogna, R. V., Bhatnagar, V., and Nigam, S. K. (2004) The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol. Pharmacol. 65, 479–487.

    Article  CAS  PubMed  Google Scholar 

  211. Sweet, D. H., Bush, K. T., and Nigam, S. K. (2001) The organic anion transporter family: from physiology to ontogeny and the clinic. Am. J. Physiol. Renal. Physiol. 281, F197–205.

    Google Scholar 

  212. Russel, F. G., Masereeuw, R., and van Aubel, R. A. (2002) Molecular aspects of renal anionic drug transport. Annu. Rev. Physiol. 64, 563–594.

    Article  CAS  PubMed  Google Scholar 

  213. Gorboulev, V., Ulzheimer, J. C., Akhoundova, A., Ulzheimer-Teuber, I., Karbach, U., Quester, S., Baumann, C., Lang, F., Busch, A. E., and Koepsell, H. (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 16, 871–881.

    Article  CAS  PubMed  Google Scholar 

  214. Muller, J., Lips, K. S., Metzner, L., Neubert, R. H., Koepsell, H., and Brandsch, M. (2005) Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol. 70, 1851–1860.

    Article  PubMed  CAS  Google Scholar 

  215. Shu, Y., Brown, C., Castro, R. A., Shi, R. J., Lin, E. T., Owen, R. P., Sheardown, S. A., Yue, L., Burchard, E. G., Brett, C. M., and Giacomini, K. M. (2007) Effect of Genetic Variation in the Organic Cation Transporter 1, OCT1, on Metformin Pharmacokinetics. Clin. Pharmacol. Ther..

    Google Scholar 

  216. Zhang, S., Lovejoy, K. S., Shima, J. E., Lagpacan, L. L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J. W., Chen, X., Lippard, S. J., and Giacomini, K. M. (2006) Organic Cation Transporters Are Determinants of Oxaliplatin Cytotoxicity. Cancer Res. 66, 8847–8857.

    Article  CAS  PubMed  Google Scholar 

  217. Yonezawa, A., Masuda, S., Yokoo, S., Katsura, T., and Inui, K. (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J. Pharmacol. Exp. Ther. 319, 879–886.

    Article  CAS  PubMed  Google Scholar 

  218. Kaewmokul, S., Chatsudthipong, V., Evans, K. K., Dantzler, W. H., and Wright, S. H. (2003) Functional mapping of rbOCT1 and rbOCT2 activity in the S2 segment of rabbit proximal tubule. Am. J. Physiol. Renal. Physiol. 285, F1149–1159.

    Google Scholar 

  219. Dresser, M. J., Xiao, G., Leabman, M. K., Gray, A. T., and Giacomini, K. M. (2002) Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm. Res. 19, 1244–1247.

    Article  CAS  PubMed  Google Scholar 

  220. Trauner, M., and Boyer, J. L. (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633–671.

    CAS  PubMed  Google Scholar 

  221. Leslie, E. M., Watkins, P. B., Kim, R. B., and Brouwer, K. L. (2007) Differential Inhibition of Rat and Human Na+-Dependent Taurocholate Cotransporting Polypeptide (NTCP/SLC10A1)by Bosentan: A Mechanism for Species Differences in Hepatotoxicity. J. Pharmacol. Exp. Ther. 321, 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  222. Alpini, G., Glaser, S., Robertson, W., Phinizy, J. L., Rodgers, R. E., Caligiuri, A., and LeSage, G. (1997) Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am. J. Physiol. 273, G518–529.

    Google Scholar 

  223. Alpini, G., Glaser, S. S., Rodgers, R., Phinizy, J. L., Robertson, W. E., Lasater, J., Caligiuri, A., Tretjak, Z., and LeSage, G. D. (1997) Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 113, 1734–1740.

    Article  CAS  PubMed  Google Scholar 

  224. Wong, M. H., Oelkers, P., Craddock, A. L., and Dawson, P. A. (1994) Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J. Biol. Chem. 269, 1340–1347.

    CAS  PubMed  Google Scholar 

  225. Ho, G. T., Moodie, F. M., and Satsangi, J. (2003) Multidrug resistance 1 gene (P-glycoprotein 170): an important determinant in gastrointestinal disease? Gut. 52, 759–766.

    Article  CAS  PubMed  Google Scholar 

  226. Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I. (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc. Natl. Acad. Sci. U S A 84, 265–269.

    Article  CAS  PubMed  Google Scholar 

  227. Dey, S., Patel, J., Anand, B. S., Jain-Vakkalagadda, B., Kaliki, P., Pal, D., Ganapathy, V., and Mitra, A. K. (2003) Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest. Ophthalmol. Vis Sci. 44, 2909–2918.

    Article  PubMed  Google Scholar 

  228. Chan, L. M., Lowes, S., and Hirst, B. H. (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci. 21, 25–51.

    Article  CAS  PubMed  Google Scholar 

  229. Maliepaard, M., van Gastelen, M. A., de Jong, L. A., Pluim, D., van Waardenburg, R. C., Ruevekamp-Helmers, M. C., Floot, B. G., and Schellens, J. H. (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 59, 4559–4563.

    CAS  PubMed  Google Scholar 

  230. Yang, C. H., Schneider, E., Kuo, M. L., Volk, E. L., Rocchi, E., and Chen, Y. C. (2000) BCRP/MXR/ABCP expression in topotecan-resistant human breast carcinoma cells. Biochem. Pharmacol. 60, 831–837.

    Article  CAS  PubMed  Google Scholar 

  231. Taipalensuu, J., Tornblom, H., Lindberg, G., Einarsson, C., Sjoqvist, F., Melhus, H., Garberg, P., Sjostrom, B., Lundgren, B., and Artursson, P. (2001) Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299, 164–170.

    CAS  PubMed  Google Scholar 

  232. Kobayashi, D., Ieiri, I., Hirota, T., Takane, H., Maegawa, S., Kigawa, J., Suzuki, H., Nanba, E., Oshimura, M., Terakawa, N., Otsubo, K., Mine, K., and Sugiyama, Y. (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab. Dispos. 33, 94–101.

    Article  CAS  PubMed  Google Scholar 

  233. Aye, I. L., Paxton, J. W., Evseenko, D. A., and Keelan, J. A. (2007) Expression, Localisation and Activity of ATP Binding Cassette (ABC) Family of Drug Transporters in Human Amnion Membranes. Placenta 28, 868–877.

    Article  CAS  PubMed  Google Scholar 

  234. Nies, A. T., and Keppler, D. (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 453, 643–659.

    Article  CAS  PubMed  Google Scholar 

  235. Thompson, R., and Strautnieks, S. (2001) BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis. 21, 545–550.

    Article  CAS  PubMed  Google Scholar 

  236. Funk, C., Pantze, M., Jehle, L., Ponelle, C., Scheuermann, G., Lazendic, M., and Gasser, R. (2001) Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology 167, 83–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SE gratefully acknowledges the considerable efforts of Dr. Shikha Varma (Accelrys, San Diego, CA) for making Discovery Studio Catalyst available and Ingenuity for kindly providing IPA. Dr. David Lawson is thanked for assistance with intrinsic disorder predictions, and we acknowledge the contributions of our colleagues and collaborators that contributed to some of the studies referenced above.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bahadduri, P.M., Polli, J.E., Swaan, P.W., Ekins, S. (2010). Targeting Drug Transporters – Combining In Silico and In Vitro Approaches to Predict In Vivo. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics