Skip to main content

Bioinformatics for Transporter Pharmacogenomics and Systems Biology: Data Integration and Modeling with UML

  • Protocol
  • First Online:
Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

Bioinformatics is the rational study at an abstract level that can influence the way we understand biomedical facts and the way we apply the biomedical knowledge. Bioinformatics is facing challenges in helping with finding the relationships between genetic structures and functions, analyzing genotype–phenotype associations, and understanding gene–environment interactions at the systems level. One of the most important issues in bioinformatics is data integration. The data integration methods introduced here can be used to organize and integrate both public and in-house data. With the volume of data and the high complexity, computational decision support is essential for integrative transporter studies in pharmacogenomics, nutrigenomics, epigenetics, and systems biology. For the development of such a decision support system, object-oriented (OO) models can be constructed using the Unified Modeling Language (UML). A methodology is developed to build biomedical models at different system levels and construct corresponding UML diagrams, including use case diagrams, class diagrams, and sequence diagrams. By OO modeling using UML, the problems of transporter pharmacogenomics and systems biology can be approached from different angles with a more complete view, which may greatly enhance the efforts in effective drug discovery and development. Bioinformatics resources of membrane transporters and general bioinformatics databases and tools that are frequently used in transporter studies are also collected here. An informatics decision support system based on the models presented here is available at http://www.pharmtao.com/transporter. The methodology developed here can also be used for other biomedical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pipas, J.M. and McMahon, J.E. (1975) Method for predicting RNA secondary structure. Proc. Natl. Acad. Sci. USA 72, 2017–2021.

    Article  CAS  PubMed  Google Scholar 

  2. Studnicka, G.M., Rahn, G.M., Cummings, I.W., Salser, W.A. (1978) Computer method for predicting the secondary structure of single-stranded RNA. Nucleic Acids Res. 5, 3365–3387.

    Article  CAS  PubMed  Google Scholar 

  3. Erdmann, V.A. (1978) Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res. 5, r1–r13.

    Google Scholar 

  4. Dayhoff, M.O., Schwartz, R.M., Chen, H.R., Hunt, L.T., Barker, W.C., Orcutt, B.C. (1980) Nucleic acid sequence bank. Science 209, 1182.

    CAS  PubMed  Google Scholar 

  5. Korn, L.J., Queen, C.L., Wegman, M.N. (1977) Computer analysis of nucleic acid regulatory sequences. Proc. Natl. Acad. Sci. USA 74, 4401–4405.

    Article  CAS  PubMed  Google Scholar 

  6. McCallum, D. and Smith, M. (1977) Computer processing of DNA sequence data. J. Mol. Biol. 116, 29–30.

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs,C., Rosenvold,E.C., Honigman,A., Szybalski, W. (1978) A simple method for identifying the palindromic sequences recognized by restriction endonucleases: the nucleotide sequence of the AvaII site. Gene 4, 1–23.

    Article  CAS  PubMed  Google Scholar 

  8. Gingeras, T.R., Milazzo, J.P., Roberts, R.J. (1978) A computer assisted method for the determination of restriction enzyme recognition sites. Nucleic Acids Res. 5, 4105–4127.

    Article  CAS  PubMed  Google Scholar 

  9. Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH Jr. (2000) Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 4, 75–100.

    Article  Google Scholar 

  10. Chen, L., Ortiz-Lopez A., Jung A., Bush D.R. (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol. 125, 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  11. Dawson, P.A., Mychaleckyj, J.C., Fossey, S.C., Mihic, S.J., Craddock, A.L., Bowden, D.W. (2001) Sequence and functional analysis of GLUT10: a glucose transporter in the Type 2 diabetes-linked region of chromosome 20q12-13.1. Mol. Genet. Metab. 74, 186–199.

    Article  CAS  PubMed  Google Scholar 

  12. Kihara, D. and Kanehisa, M. (2000) Tandem clusters of membrane proteins in complete genome sequences. Genome Res. 10, 731–743.

    Article  CAS  PubMed  Google Scholar 

  13. Yan, Q. (2001) Informatics Support for Human Membrane Transporter Pharmacogenomics Studies. ProQuest, Ann Arbor, MI, pp. 1–138.

    Google Scholar 

  14. http://tcdb.ucsd.edu/index.php (accessed in May 2009).

  15. Nebert, D.W. (1999) Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin. Genet. 56, 247–258.

    Article  CAS  PubMed  Google Scholar 

  16. Sissung, T. M., Gardner, E. R., et al. (2008) Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol. Biol. 448, 41–62.

    Article  CAS  PubMed  Google Scholar 

  17. Frishman, D., Heumann, K., Lesk, A., Mewes, H.W. (1998) Comprehensive, comprehensible, distributed and intelligent databases: current status. Bioinformatics 14, 551–561.

    Article  CAS  PubMed  Google Scholar 

  18. Rechenmann, F. (2000) From data to knowledge. Bioinformatics 16, 411.

    Article  CAS  PubMed  Google Scholar 

  19. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Rumbaugh, J., Lorenson, W. (1991) Object-Oriented Modeling and Design. Prentice Hall, pp. 1–500.

    Google Scholar 

  20. Korson, T. and McGregor, J. (1990) Understanding Object-Oriented: A Unifying Paradigm. CACM 9, 40–60.

    Google Scholar 

  21. Object Management Group. (1999) OMG Unified Modeling Language Specification. Object Management Group, Inc., pp. 1–808.

    Google Scholar 

  22. Martinez, R., Rozenblit, J., Cook, J.F., Chacko, A.K., and Timboe, H.L. (1999) Virtual management of radiology examinations in the virtual radiology environment using common object request broker architecture services. J. Digit. Imaging 12, 181–185.

    Article  CAS  PubMed  Google Scholar 

  23. Quitadamo, L. R., Marciani, M. G., et al. (2008) Describing different brain computer interface systems through a unique model: a UML implementation. Neuroinformatics 6, 81–96.

    Article  PubMed  Google Scholar 

  24. Fridsma, D. B., Evans, J., et al. (2008) The BRIDG project: a technical report. J. Am. Med. Inform. Assoc. 15, 130–137.

    Article  PubMed  Google Scholar 

  25. Webb, K. and White, T. (2005) UML as a cell and biochemistry modeling language. Biosystems 80, 283–302.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor, C. F., Paton, N. W., et al. (2003) A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 21, 247–254.

    Article  CAS  PubMed  Google Scholar 

  27. Xirasagar, S., Gustafson, S., et al. (2004) CEBS object model for systems biology data, SysBio-OM. Bioinformatics 20, 2004–2015.

    Article  CAS  PubMed  Google Scholar 

  28. Jedlitschky, G., Leier, I., Buchholz, U., Barnouin, K., Kurz, G., and Keppler, D. (1996) Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res. 56, 988–994.

    CAS  PubMed  Google Scholar 

  29. Hipfner, D.R., Deeley, R.G., and Cole, S.P. (1999) Structural, mechanistic and clinical aspects of MRP1. Biochim. Biophys. Acta. 1461, 359–376.

    Article  CAS  PubMed  Google Scholar 

  30. Hyde, S.C., Emsley, P., Hartshorn, M.J., et al. (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346, 362–365.

    Article  CAS  PubMed  Google Scholar 

  31. Cui, Y., Konig, J., Buchholz, J.K., et al. (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55, 929–937.

    CAS  PubMed  Google Scholar 

  32. Keppler, D., Leier, I., Jedlitschky, G., and Konig, J. (1998) ATP-dependent transport of glutathione S-conjugates by the multidrug resistance protein MRP1 and its apical isoform MRP2. Chem. Biol. Interact. 111–112, 153–161.

    Article  PubMed  Google Scholar 

  33. Harmon, P. and Watson, M. (1997) Understanding Uml: The Developer's Guide: With a Web-Based Application in Java. Morgan Kaufmann Publishers, pp. 1–340.

    Google Scholar 

  34. http://pharmtao.com/transporter (accessed in May 2009).

  35. Ross, D.D., Yang, W., Abruzzo, L.V., et al. (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J. Natl. Cancer Inst. 91, 429–433.

    Article  CAS  PubMed  Google Scholar 

  36. Yan, Q., and Sadée, W. (2000) Human membrane transporter database: a Web-accessible relational database for drug transport studies and pharmacogenomics. AAPS PharmSci 2, E20.

    Google Scholar 

  37. Marshall, A. (1997) Laying the foundations for personalized medicines. Nat. Biotechnol. 15, 954–957.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yan, Q. (2010). Bioinformatics for Transporter Pharmacogenomics and Systems Biology: Data Integration and Modeling with UML. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics