Skip to main content

Death and Survival Signals in Photodynamic Therapy

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 635))

Abstract

Photodynamic therapy (PDT) is an anticancer modality utilizing the generation of singlet oxygen and other reactive oxygen species through visible light irradiation of a photosensitive dye accumulated in the cancerous tissue. Upon exposure of cancer cells to the photodynamic stress, multiple signaling cascades are concomitantly activated and depending on the subcellular location of the generated ROS and the intensity of the oxidative damage, they dictate whether cells will cope with the stress and survive or succumb and die. Different methodologies have been developed to allow the discrimination of cell death subroutines at the morphological, ultrastructural, and biochemical levels and to scrutinize signaling cascades in response to PDT. Here we describe a selection of useful techniques to characterize apoptosis and autophagy and to monitor the activation status of the MAPK- and Akt-mTOR pathways after PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E. S. et al. (2008) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ, 16, 3–11.

    Article  PubMed  Google Scholar 

  2. Oleinick, N. L., Morris, R. L., and Belichenko, I. (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci, 1(1), 1–21.

    Article  PubMed  CAS  Google Scholar 

  3. Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat Rev Cancer, 3(5), 380–387.

    Article  PubMed  CAS  Google Scholar 

  4. Buytaert, E., Dewaele, M., and Agostinis, P. (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta, 1776(1), 86–107.

    PubMed  CAS  Google Scholar 

  5. Yorimitsu, T. and Klionsky, D. J. (2007) Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol, 17(6), 279–285.

    Article  PubMed  CAS  Google Scholar 

  6. Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075.

    Article  PubMed  CAS  Google Scholar 

  7. Falk, H., Meyer, J., and Oberreiter, M. (1993) A convenient semisynthetic route to hypericin. Monatshefte fur Chemie, 124(3), 339–341.

    Article  CAS  Google Scholar 

  8. Assefa, Z., Vantieghem, A., Declercq, W., Vandenabeele, P., Vandenheede, J. R. et al. (1999) The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem, 274(13), 8788–8796.

    Article  PubMed  CAS  Google Scholar 

  9. Agostinis, P., Vantieghem, A., Merlevede, W., and De Witte, P. A. (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol, 34(3), 221–241.

    Article  PubMed  CAS  Google Scholar 

  10. Buytaert, E., Callewaert, G., Hendrickx, N., Scorrano, L., Hartmann, D. et al. (2006) Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J, 20(6), 756–758.

    PubMed  CAS  Google Scholar 

  11. Salvesen, G. S. and Riedl, S. J. (2008) Caspase mechanisms. Adv Exp Med Biol, 615, 13–23.

    Article  PubMed  CAS  Google Scholar 

  12. van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J. et al. (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ, 9(10), 1031–1042.

    Article  PubMed  Google Scholar 

  13. Cummings, M. C., Winterford, C. M., and Walker, N. I. (1997) Apoptosis. Am J Surg Pathol, 21(1), 88–101.

    Article  PubMed  CAS  Google Scholar 

  14. Falcieri, E., Gobbi, P., Cataldi, A., Zamai, L., Faenza, I. et al. (1994) Nuclear pores in the apoptotic cell. Histochem J, 26(9), 754–763.

    Article  PubMed  CAS  Google Scholar 

  15. Kerr, J. F., Winterford, C. M., and Harmon, B. V. (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer, 73(8), 2013–2026.

    Article  PubMed  CAS  Google Scholar 

  16. Clarke, P. G. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl), 181(3), 195–213.

    Article  CAS  Google Scholar 

  17. Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G. et al. (2007) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 4(2), 139–140.

    PubMed  Google Scholar 

  18. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature, 410(6824), 37–40.

    Article  PubMed  CAS  Google Scholar 

  19. Woodgett, J. R. (2005) Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol, 17(2), 150–157.

    Article  PubMed  CAS  Google Scholar 

  20. Hay, N. (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell, 8(3), 179–183.

    Article  PubMed  CAS  Google Scholar 

  21. Agostinis, P., Buytaert, E., Breyssens, H., and Hendrickx, N. (2004) Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci, 3(8), 721–729.

    Article  PubMed  CAS  Google Scholar 

  22. Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V., and Di, L. F. (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem, 264(3), 687–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in author’s laboratory is supported by OT/06/49 grant of the Catholic University of Leuven, by F.W.O grants G.0492.05 and G.0661.09. This chapter presents research results of the IAP6/18, funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. Michael Dewaele’s research is funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). Dr. Wim Martinet is a postdoctoral fellow of the F.W.O. Flanders.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dewaele, M., Verfaillie, T., Martinet, W., Agostinis, P. (2010). Death and Survival Signals in Photodynamic Therapy. In: Gomer, C. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 635. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-697-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-697-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-696-2

  • Online ISBN: 978-1-60761-697-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics