Skip to main content

Bifunctional Agents for Imaging and Therapy

  • Protocol
  • First Online:
Photodynamic Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 635))

Abstract

Multiple, complementary techniques for tumor detection, including magnetic resonance, nuclear and optical imaging, are under active development; each approach has particular strengths and advantages. Efforts are also currently underway to develop bifunctional agents, so that a single molecule can be used for imaging, therapy, and monitoring the long-term tumor response. This chapter is mainly focused on illustrating the utility of certain tumor-avid photosensitizers in developing agents for tumor imaging [fluorescence, magnetic resonance imaging (MRI), positron emission tomography (PET)] and photodynamic therapy. Recent approaches for developing target-specific agents for photodynamic therapy (PDT) and in vivo tumor imaging are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q. (1998) Photodynamic therapy. J Natl Cancer Inst, 90, 889–905.

    Article  PubMed  CAS  Google Scholar 

  2. Jori, G. (2004) Photodynamic therapy: basic and preclinical aspects. In: Horspool, W. and Francesco, L. (eds.) CRC Handbook of Organic Photochemistry and Photobiology. Boca Raton: CRC Press, Chapter 146.

    Google Scholar 

  3. Kessel, D. (2004) Delivery of photosensitizing agents. Adv. Drug Delivery Rev, 56(1), 7–8.

    Article  CAS  Google Scholar 

  4. Dolmans, D. E. J. G., Fukumura, D., and Jain, R. K. (2003) Photodynamic therapy for cancer. Nat Rev Cancer, 3(5), 380.

    Article  PubMed  CAS  Google Scholar 

  5. Pandey, R. K. and Zheng, G. (2000) Porphyrins as photosensitizers in photodynamic therapy. Porphyrin Handb, 6, 157–230. and the references therein.

    CAS  Google Scholar 

  6. Pandey, R. K., James, N., Chen, Y., and Dobhal, M. P. (2008) Topics in Heterocyclic Chemistry. Berlin/Heidelberg: Springer, Vol. 14/2008, 41–74.

    Google Scholar 

  7. Henderson, B. W. and Dougherty, T. J. (1992) How does photodynamic therapy work? Photochem Photobiol, 55, 145–157.

    Article  PubMed  CAS  Google Scholar 

  8. Sternberg, E. D., Dolphin, D., and Bruckner, C. (1998) Porphyrin-based photosensitizers for the use in photodynamic therapy. Tetrahedron, 54(17), 4151–4202.

    Article  CAS  Google Scholar 

  9. Sherman, W. M., Allen, C. M., and van Lier, J. E. (2000) Role of activated oxygen species in photodynamic therapy. Methods Enzymol, 319, 376–386.

    Article  Google Scholar 

  10. MacDonald, I. and Dougherty, T. J. (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines, 5(105), 2001–2011.

    Google Scholar 

  11. Weishaupt, K. R., Gomer, C. J., and Dougherty, T. J. (1976) Identification of singlet oxygen as the cytotoxic agent in photoinactivation of murine tumor. Cancer Res, 90, 889–899.

    Google Scholar 

  12. Ali, H. and Van Lier, J. E. (1999) Metal complexes as photo- and radiosensitizers. Chem Rev (Washington, DC), 99, 2379–2450.

    Article  CAS  Google Scholar 

  13. Bonnett, R. (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev, 24, 19–33.

    Article  CAS  Google Scholar 

  14. Chen, Y., Sumlin, A., Morgan, J., Gryshuk, A., Oseroff, A., Henderson, B. W., Dougherty, T. J., and Pandey, R. K. (2004) Synthesis and photosensitizing efficacy of isomerically pure bacteriopurpurinimides. J Med Chem, 47, 4814–4817.

    Article  PubMed  CAS  Google Scholar 

  15. Ethirajan, M., Saenz, C., Gupta, A., Dobhal Mahabeer, P., and Pandey Ravindra, K. (2008) In: Hamblin, M. R. and Mroz, P. (eds.), Photosynsitizers for Photodynamic Therapy and Imaging: Advances in Photodynamic Therapy. Boston: Artech House Series.

    Google Scholar 

  16. Kessel, D. (2004) Delivery of photosensitizing agents. Adv Drug Delivery Rev, 56, 7–8.

    Article  CAS  Google Scholar 

  17. Oleinick, N. L., Morris, R. L., and Belichenko, I. (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci, 1, 1–21.

    Article  PubMed  CAS  Google Scholar 

  18. Pandey, R. K., Goswami, L. N., Chen, Y., Gryshuk, A., Missert, J. R., Oseroff, A., and Dougherty, T. J. (2006) Nature: a rich source for developing multifunctional agents. Tumor-imaging and photodynamic therapy. Lasers Surg Med, 38, 445–467.

    Article  PubMed  Google Scholar 

  19. Pandey, R. K. and Herman, C. K. (1998) Shedding some light on tumors. Chem Ind (London), 739–743.

    Google Scholar 

  20. Brown, S. B., Brown, E. A., and Walker, I. (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol, 5, 497–508.

    Article  PubMed  CAS  Google Scholar 

  21. Fingar, V. H., Wieman, J., Wiehle, S. A., and Cerrito, P. B. (1992) The role of microvasulature damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability and leukocyte adhesion. Cancer Res, 53, 4914–4924.

    Google Scholar 

  22. Fingar, V. H., Wieman, T. J., Karavolos, P. S., Doak, K. W., Ouellet, R., and van Lier, J. E. (1993) The effects of photodynamic therapy using different substituted phthalocyanines on vessel constriction, vessel leakage and tumor response. Photochem Photobiol, 58, 251.

    Article  PubMed  CAS  Google Scholar 

  23. Pandey, R. K., Sumlin, A. B., Constantine, S., Aoudia, M., Potter, W. R., Bellnier, D. A., Henderson, B. W., Rodgers, M. A., Smith, K. M., and Dougherty, T. J. (1996) Alkyl ether analogs of chlorophyll-a derivatives, Part 1: synthesis, photophysical properties and photodynamic efficacy. Photochem Photobiol, 64, 194–204.

    Article  PubMed  CAS  Google Scholar 

  24. Tarantola, R. M., Law, J. C., Recchia, F. M., Sternberg, P., Jr., and Agarwal, A. (2008) Photodynamic therapy as treatment of chronic idiopathic central serous chorioretinopathy. Lasers Surg Med, 40, 671–675.

    Article  PubMed  Google Scholar 

  25. Betz, C. S., Rauschning, W., Stranadko, E. P., Riabov, M. V., Albrecht, V., Nifantiev, N. E., and Hopper, C. (2008) Optimization of treatment parameters for Foscan-PDT of basal cell carcinomas. Lasers Surg Med, 40, 300–311.

    Article  PubMed  Google Scholar 

  26. Berkovitch, G., Doron, D., Nudelman, A., Malik, Z., and Rephaeli, A. (2008) Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity independent and dependent on photoactivation. J Med Chem, 51, 7356–7369.

    Article  PubMed  CAS  Google Scholar 

  27. Ohshiro, T., Nakajima, T., Sasaki, K., Fujii, S., and Taniguchi, Y. (2008) Photodynamic therapy with Talaporfin sodium for capillary hemangioma in a chicken comb model. Laser Surg Med, Suppl 20, Meeting Abstract, 339, 102.

    Google Scholar 

  28. Woodhams Josephine, H., MacRobert Alexander, J., Novelli, M., and Bown Stephen, G. (2006) Photodynamic therapy with WST09 (Tookad): quantitative studies in normal colon and transplanted tumours. Int J Can (Journal international du cancer), 118, 477–482.

    Article  CAS  Google Scholar 

  29. Pandey, R. K. et al. Unpublished results.

    Google Scholar 

  30. Ke, M. S., Xue, L. -y, Feyes, D. K., Azizuddin, K., Baron, E. D., McCormick, T. S., Mukhtar, H., Panneerselvam, A., Schluchter, M. D., Cooper, K. D. et al. (2008) Apoptosis mechanisms related to the increased sensitivity of Jurkat T-cells vs A431 epidermoid cells to photodynamic therapy with the phthalocyanine Pc 4. Photochem Photobiol, 84, 407–414.

    Article  PubMed  CAS  Google Scholar 

  31. Taquet, J. -p., Frochot, C., Manneville, V. and Barberi-Heyob, M. (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Curr Med Chem, 14, 1673–1687.

    Article  PubMed  CAS  Google Scholar 

  32. Milgrom, L. R. (2008) Towards recombinant antibody-fragment targeted photodynamic therapy. Sci Prog, 91, 241–263.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, B., Pogue, B. W., Hoopes, P. J., and Hasan, T. (2006) Vascular and cellular targeting for photodynamic therapy. Crit Rev Eukaryot Gene Expr, 16, 279–305.

    Article  PubMed  Google Scholar 

  34. Henry, J. M. and Isaacs, J. T. (1989) Synergistic enhancement of the efficacy of the bioreductively activated alkylating agent RSU-1164 in the treatment of prostatic cancer by photodynamic therapy. J Urol, 142, 165–170.

    PubMed  CAS  Google Scholar 

  35. Urizzi, P., Allen, C. M., Langlois, R., Ouellet, R., La Madeleine, C., and Van Lier, J. E. (2001) Low-density lipoprotein-bound aluminum sulfophthalocyanine: targeting tumor cells for photodynamic therapy. J Porphyr Phthalocyanines, 5, 154–160.

    Article  CAS  Google Scholar 

  36. Henderson, B. W., Bellnier, D. A., Greco, W. R., Sharma, A., Pandey, R. K., Vaughan, L. A., Weishaupt, K. R., and Dougherty, T. J. (1997) An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res, 57, 4000–4007.

    PubMed  CAS  Google Scholar 

  37. Raab, O. (1900) Action of fluorescent materials on infusorial substances. Zeitschrift fuer Biologie (Munich), 39, 524–546.

    CAS  Google Scholar 

  38. Winkelman, J. and Rasmussen-Taxdal, D. S. (1960) Quantitative determination of porphyrin uptake by tumor tissue following parenteral administration. Bull Johns Hopkins Hosp, 107, 228–233.

    PubMed  CAS  Google Scholar 

  39. Lipson, R. L. and Baldes, E. J. (1960) The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol, 82, 508–516.

    Article  PubMed  CAS  Google Scholar 

  40. Dougherty, T. J., Grindey, G. B., Fiel, R., Weishaupt, K. R., and Boyle, D. G. (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst, 55, 115–121.

    PubMed  CAS  Google Scholar 

  41. Dougherty, T. J., Grindley, G. B., and Weishaupt, K. R. (1975) Photoradiation therapy of animal tumors. Proc Am Assoc Cancer Res, 16, 29–29.

    Google Scholar 

  42. Yumita, N., Han, Q. -S., Kitazumi, I., and Umemura, S.-i. (2008) Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by mono-l-aspartyl chlorin e6. Cancer Sci, 99, 166–172.

    PubMed  CAS  Google Scholar 

  43. Gurfinkel, M., Thompson, A. B., Ralston, W., Troy, T. L., Moore, A. L., Moore, T. A., Gust, J. D., Tatman, D., Reynolds, J. S., Muggenburg, B. et al. (2000) Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study. Photochem Photobiol, 72, 94–102.

    Article  PubMed  CAS  Google Scholar 

  44. Foster, A. E., Kwon, S., Ke, S., Lu, A., Eldin, K., Sevick-Muraca, E., and Rooney, C. M. (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt, 47, 5944–5952.

    Article  PubMed  CAS  Google Scholar 

  45. Poellinger, A., Martin Jan, C., Ponder Steven, L., Freund, T., Hamm, B., Bick, U., and Diekmann, F. (2008) Near-infrared laser computed tomography of the breast first clinical experience. Acad Radiol, 15, 1545–1553.

    Article  PubMed  Google Scholar 

  46. Hawrysz, D. J. and Sevick-Muraca, E. M. (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia (New York, NY), 2, 388–417.

    Article  CAS  Google Scholar 

  47. Mahmood, U., Tung, C. -H., Tang, Y., and Weissleder, R. (2002) Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Radiology, 224, 446–451.

    Article  PubMed  Google Scholar 

  48. Dougherty, T. J. and Levy, J. G. (2003) Photodynamic therapy (PDT) and clinical applications. Biomed Photonics Handb, 38/31–38/16.

    Google Scholar 

  49. Henderson, B. W. and Miller, A. C. (1986) Effects of the scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation. Radiat Res, 108, 196.

    Article  PubMed  CAS  Google Scholar 

  50. Chin, W. W. L., Heng, P. W. S., and Olivo, M. (2007) Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts. BMC Pharmacol, 7, 15.

    Article  PubMed  CAS  Google Scholar 

  51. Chin, W. W. L., Heng, P. W. S., Thong, P. S. P., Bhuvaneswari, R., Hirt, W., Kuenzel, S., Soo, K. C., and Olivo, M. (2008) Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. Euro J Pharm Biopharma, 69, 1083–1093.

    Article  CAS  Google Scholar 

  52. Pandey, R. K. et al. Unpublished results.

    Google Scholar 

  53. Chin, W. W. L., Lau, W. K. O., Heng, P. W. S., Bhuvaneswari, R., and Olivo, M. (2006) Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6-polyvinylpyrrolidone. J Photochem Photobio B, Biol, 84, 103–110.

    Article  CAS  Google Scholar 

  54. Jiang, F. -L., Wong, W. -K., Zhu, X. -J., Zhou, G. -J., Wong, W. -Y., Wu, P. -L., Tam, H. -L., Cheah, K. -W., Ye, C., and Liu, Y. (2007) Synthesis, characterization, and photophysical properties of some heterodimetallic bisporphyrins of ytterbium and transition metals – enhancement and lifetime extension of Yb3+ emission by transition-metal porphyrin sensitization. Euro J Inorg Chem, 3365–3374.

    Google Scholar 

  55. Gravier, J., Schneider, R., Frochot, C., Bastogne, T., Schmitt, F., Didelon, J., Guillemin, F., and Barberi-Heyob, M. (2008) Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem, 51(13), 3867–3877.

    Article  PubMed  CAS  Google Scholar 

  56. Li, G., Slansky, A., Dobhal, M. P., Goswami, L. N., Graham, A., Chen, Y., Kanter, P., Alberico, R. A., Spernyak, J., Morgan, J. et al. (2005) Chlorophyll-a analogues conjugated with aminobenzyl-DTPA as potential bifunctional agents for magnetic resonance imaging and photodynamic therapy. Bioconjug Chem, 16, 32–42.

    Article  PubMed  CAS  Google Scholar 

  57. Liu, J., Ohta, S. -I., Sonoda, A., Yamada, M., Yamamoto, M., Nitta, N., Murata, K., and Tabata, Y. (2007) Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release, 117, 104–110.

    Article  PubMed  CAS  Google Scholar 

  58. Chang, T. C., Chang, C. -C., Kang, C. -C., Chen, C. -T., and Lin, Y. -C. (2007) A new BMVC-porphyrin binary photosensitizer for PDT selectivity. Mol Cancer Ther, 6, 3526S.

    Google Scholar 

  59. Chen, Y., Gryshuk, A., Achilefu, S., Ohulchansky, T., Potter, W., Zhong, T., Morgan, J., Chance, B., Prasad, P. N., Henderson, B. W. et al. (2005) A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug Chem, 16, 1264–1274.

    Article  PubMed  CAS  Google Scholar 

  60. Chen, Y., Ohkubo, K., Zhang, M., Wenbo, E., Liu, W., Pandey, S. K., Ciesielski, M., Baumann, H., Erin, T., Fukuzumi, S. et al. (2007) Photophysical, electrochemical characteristics and cross-linking of STAT-3 protein by an efficient bifunctional agent for fluorescence image-guided photodynamic therapy. Photochem Photobiol Sci, 6, 1257–1267.

    Article  PubMed  CAS  Google Scholar 

  61. Isakau, H. A., Parkhats, M. V., Knyukshto, V. N., Dzhagarov, B. M., Petrov, E. P., and Petrov, P. T. (2008) Toward understanding the high PDT efficacy of chlorin e6-polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizer-polymer interaction in vitro. J Photochem Photobiol B, Biol, 92, 165–174.

    Article  PubMed  CAS  Google Scholar 

  62. Boisbrun, M., Vanderesse, R., Engrand, P., Olie, A., Hupont, S., Regnouf-de-Vains, J. -B., and Frochot, C. (2008) Design and photophysical properties of new RGD targeted tetraphenylchlorins and porphyrins. Tetrahedron, 64, 3494–3504.

    Article  CAS  Google Scholar 

  63. Thomas, N., Tirand, L., Chatelut, E., Plenat, F., Frochot, C., Dodeller, M., Guillemin, F., and Barberi-Heyob, M. (2008) Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma bearing nude mice. Photochem Photobiol Sci, 7(4), 433–441.

    Article  PubMed  CAS  Google Scholar 

  64. Li, Y., Jang, W. -D., Nishiyama, N., Kishimura, A., Kawauchi, S., Morimoto, Y., Miake, S., Yamashita, T., Kikuchi, M., Aida, T. et al. (2007) Dendrimer generation effects on photodynamic efficacy of dendrimer porphyrins and dendrimer-loaded supramolecular nanocarriers. Chem Mater, 19, 5557–5562.

    Article  CAS  Google Scholar 

  65. Pandey, S. K., Gryshuk, A. L., Sajjad, M., Zheng, X., Chen, Y., Abouzeid, M. M., Morgan, J., Charamisinau, I., Nabi, H. A., Oseroff, A. et al. (2005) Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem, 48, 6286–6295.

    Article  PubMed  CAS  Google Scholar 

  66. Pandey, S. K., Sajjad, M., Chen, Y., Zheng, X., Yao, R., Missert, J. R., Batt, C., Nabi, H. A., Oseroff, A. R., and Pandey, R. K. (2009) Comparative positron-emission tomography (PET) imaging and phototherapeutic potential of 124I-labeled methyl-3-(1′-iodobenzyloxyethyl)pyropheophorbide-a vs the corresponding glucose and galactose conjugates. J Med Chem, 52, 445–455.

    Article  PubMed  CAS  Google Scholar 

  67. Pandey, S. K., Sajjad, M., Chen, Y., Pandey, A., Missert, J. R., Batt, C., Yao, R., Oseroff, A. R., and Pandey, R. K. (2009) Compared to purpurinimides, the pyropheophorbide containing an iodobenzyl group showed enhanced PDT efficacy and tumor imaging ability. Bioconjug Chem, 20(2), 274–282.

    Article  PubMed  CAS  Google Scholar 

  68. Kang, C. -C., Chen, C. -T., Cho, C. -C., Lin, Y. -C., Chang, C. -C., and Chang, T. -C. (2008) A dual selective antitumor agent and fluorescence probe: the binary BMVC-porphyrin photosensitizer. ChemMedChem, 3, 725–728.

    Article  PubMed  CAS  Google Scholar 

  69. Zheng, G., Graham, A., Shibata, M., Missert, J. R., Oseroff, A. R., Dougherty, T. J., and Pandey, R. K. (2001) Synthesis of beta -galactose-conjugated chlorins derived by enyne metathesis as galectin-specific photosensitizers for photodynamic therapy. J Org Chem, 66, 8709–8716.

    Article  PubMed  CAS  Google Scholar 

  70. Li, G., Pandey, S. K., Graham, A., Dobhal, M. P., Mehta, R., Chen, Y., Gryshuk, A., Rittenhouse-Olson, K., Oseroff, A., and Pandey, R. K. (2004) Functionalization of OEP-based benzochlorins to develop carbohydrate-conjugated photosensitizers. Attempt to target beta -galactoside-recognized proteins. J Org Chem, 69, 158–172.

    Article  PubMed  CAS  Google Scholar 

  71. Stefflova, K., Chen, J., and Zheng, G. (2007) Killer beacons for combined cancer imaging and therapy. Curr Med Chem, 14, 2110–2125.

    Article  PubMed  CAS  Google Scholar 

  72. Stefflova, K., Li, H., Chen, J., and Zheng, G. (2007) Peptide-based pharmacomodulation of a cancer-targeted optical imaging and photodynamic therapy agent. Bioconjug Chem, 18, 379–388.

    Article  PubMed  CAS  Google Scholar 

  73. Massoud, T. F. and Gambhir, S. S. (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev, 17, 545–580.

    Article  PubMed  CAS  Google Scholar 

  74. Chance, B. (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci, 838, 29–45.

    Article  PubMed  CAS  Google Scholar 

  75. Chance, B., Cope, M., Gratton, E., Ramanujam, N., and Tromberg, B. (1998) Phase measurement of light absorption and scatter in human tissue. Rev Sci Instrum, 69, 3457–3481.

    Article  CAS  Google Scholar 

  76. Choy, G., Choyke, P., and Libutti, S. K. (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging, 2, 303–312.

    Article  PubMed  CAS  Google Scholar 

  77. Achilefu, S., Dorshow, R. B., Bugaj, J. E., and Rajagopalan, R. (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol, 35, 479–485.

    Article  PubMed  CAS  Google Scholar 

  78. Choi, H., Choi Seok, R., Zhou, R., Kung Hank, F., and Chen, I. W. (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol, 11, 996–1004.

    Article  PubMed  Google Scholar 

  79. Gao, X., Cui, Y., Levenson Richard, M., Chung Leland, W. K., and Nie, S. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 22, 969–976.

    Article  PubMed  CAS  Google Scholar 

  80. Kelly, K., Alencar, H., Funovics, M., Mahmood, U., and Weissleder, R. (2004) Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res, 64, 6247–6251.

    Article  PubMed  CAS  Google Scholar 

  81. Sevick-Muraca, E. M., Godavarty, A., Houston, J. P., Thompson, A. B., and Roy, R. (2003) Near-infrared imaging with fluorescent contrast agents. Handb Biomed Fluoresc, 445–527.

    Google Scholar 

  82. Bouteiller, C., Clave, G., Bernardin, A., Chipon, B., Massonneau, M., Renard, P. -Y., and Romieu, A. (2007) Novel water-soluble near-infrared cyanine dyes: synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes. Bioconjug Chem, 18, 1303–1317.

    Article  PubMed  CAS  Google Scholar 

  83. Weissleder, R. and Ntziachristos, V. (2003) Shedding light onto live molecular targets. Nat Med (New York, NY, US), 9, 123–128.

    CAS  Google Scholar 

  84. Frangioni, J. V. (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol, 7, 626–634.

    Article  PubMed  CAS  Google Scholar 

  85. Klohs, J., Wunder, A., and Licha, K. (2008) Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res Cardiol, 103, 144–151.

    Article  PubMed  CAS  Google Scholar 

  86. Ntziachristos, V. (2006) Fluorescence molecular imaging. Ann Rev Biomed Eng, 8, 1–33.

    Article  CAS  Google Scholar 

  87. Sevick-Muraca, E. M., Kuwana, E., Godavatry, A., Houston, J. P., Thompson, J. P., and Roy, R. (2000) Near infra-red fluorescence imaging and spectroscopy in random media and tissues. In: Vo-Dinh, T. (ed.) Biomedical Photonics. Boca Raton: CRC Press.

    Google Scholar 

  88. Stranc, M. F., Sowa, M. G., Abdulrauf, B., and Mantsch, H. H. (1998) Assessment of tissue viability using near-infrared spectroscopy. Br J Plast Surg, 51, 210–217.

    Article  PubMed  CAS  Google Scholar 

  89. Klohs, J., Graefe, M., Graf, K., Steinbrink, J., Dietrich, T., Stibenz, D., Bahmani, P., Kronenberg, G., Harms, C., Endres, M. et al. (2008) In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody. Stroke, 39, 2845–2852.

    Article  PubMed  CAS  Google Scholar 

  90. James, N. S., Goswami, L. N., Chen, Y., Sunar, U., Ohulchansky, T., and Pandey, R. K. Versatile Cyanine Dye Based Compounds for Tumor Imaging and Photodynamic Therapy. International Conference of Porphyrins and Phthalocyanines (ICPP-5), Moscow, July 2008.

    Google Scholar 

  91. Hilgenbrink, A. R. and Low, P. S. (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci, 94, 2135–2146.

    Article  PubMed  CAS  Google Scholar 

  92. Low, P. S., Henne, W. A., and Doorneweerd, D. D. (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res, 41, 120–129.

    Article  CAS  Google Scholar 

  93. Lu, Y. and Low, P. S. (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Delivery Rev, 54, 675–693.

    Article  CAS  Google Scholar 

  94. Leamon, C. P. and Low, P. S. (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today, 6, 44–51.

    Article  PubMed  CAS  Google Scholar 

  95. Salazar, M. D. A. and Ratnam, M. (2007) The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev, 26, 141–152.

    Article  PubMed  CAS  Google Scholar 

  96. Mueller, C., Schibli, R., Krenning, E. P., and de Jong, M. (2008) Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med, 49, 623–629.

    Article  CAS  Google Scholar 

  97. Sega, E. I. and Low, P. S. (2008) Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev, 27, 655–664.

    Article  PubMed  CAS  Google Scholar 

  98. Schneider, R., Schmitt, F., Frochot, C., Fort, Y., Lourette, N., Guillemin, F., Mueller, J. -F., and Barberi-Heyob, M. (2005) Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Bioorg Med Chem, 13, 2799–2808.

    Article  PubMed  CAS  Google Scholar 

  99. Hofmeister, V., Schrama, D., and Becker, J. C. (2007) Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother, 57, 1–17.

    Article  PubMed  CAS  Google Scholar 

  100. Lo, P. -C., Chen, J., Stefflova, K., Warren, M. S., Navab, R., Bandarchi, B., Mullins, S., Tsao, M., Cheng, J. D., and Zheng, G. (2009) Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. J Med Chem, 52, 358–368.

    Article  PubMed  CAS  Google Scholar 

  101. Nestle, U., Weber, W., Hentschel, M., and Grosu, A. -L. (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol, 54, R1–R25.

    Article  PubMed  Google Scholar 

  102. Magne, N., Chargari, C., Vicenzi, L., Gillion, N., Messai, T., Magne, J., Bonardel, G., and Haie-Meder, C. (2008) New trends in the evaluation and treatment of cervix cancer: the role of FDG-PET. Cancer Treat Rev, 34, 671–681.

    Article  PubMed  Google Scholar 

  103. Verel, I., Visser Gerard, W. M., and van Dongen Guus, A. (2005) The promise of immuno-PET in radioimmunotherapy. J Nucl Med: official publication, Society of Nuclear Medicine, 46(Suppl 1), 164S–171S.

    Google Scholar 

  104. Laville, I., Pigaglio, S., Blais, J. -C., Doz, F., Loock, B., Maillard, P., Grierson David, S., and Blais, J. (2006) Photodynamic efficiency of diethylene glycol-linked glycoconjugated porphyrins in human retinoblastoma cells. J Med Chem, 49, 2558–2567.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang, M., Zhang, Z., Blessington, D., Li, H., Busch, T. M., Madrak, V., Miles, J., Chance, B., Glickson, J. D., and Zheng, G. (2003) Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjug Chem, 14, 709–714.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang, X., Morgan, J., Pandey, S. K., Chen, Y., Tracy, E., Baumann, H., Missert, J. R., Batt, C., Jackson, J., Bellnier, D. A., Henderson, B. W., and Pandey, R. K. (2009) Conjugation of HPPH to carbohydrates changes its subcellular distribution and enhances photodynamic activity in vivo. J Med Chem, 52, 4306–4318.

    Article  CAS  Google Scholar 

  107. Munoz, A. and Castillo, M. (2008) Indications for adult and pediatric magnetic resonance imaging gadolinium-enhanced cisternography and myelography: experience and review of the literature. Curr Med Imaging Rev, 4, 170–180.

    Article  Google Scholar 

  108. Caravan, P., Ellison, J. J., McMurry, T. J., and Lauffer, R. B. (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics and applications. Chem Rev, 99, 2293–2352.

    Article  PubMed  CAS  Google Scholar 

  109. Hueber, M. M., Staubli, A. B., Kustedjo, K., Gray, M. H. B., Shih, J., Fraser, S. E., Jacobs, R. E., and Meade, T. J. (1998) Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem, 9, 242–249.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are highly thankful to our collaborators over the years for their contributions. There name can be found in various citations. We also thank the NIH (CA55791, CA109914, CA114053, CA127639), Roswell Park Alliance, the Oncologic Foundation of Buffalo, and the shared resources of the RPCI (support Grant P30CA16056) for the financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pandey, R.K., James, N.S., Chen, Y., Missert, J., Sajjad, M. (2010). Bifunctional Agents for Imaging and Therapy. In: Gomer, C. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 635. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-697-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-697-9_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-696-2

  • Online ISBN: 978-1-60761-697-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics