Skip to main content

Small Molecule Screen in Zebrafish and HSC Expansion

  • Protocol
  • First Online:
Cellular Programming and Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 636))

Abstract

The zebrafish (Danio rerio) has emerged as a valuable model organism that is amenable for large-scale chemical and genetic screens. The ability of zebrafish to produce large quantities of synchronized, externally fertilized, transparent embryos makes them ideal for screens, which often are not possible in mammalian models. Signaling pathways important for hematopoiesis are well conserved between zebrafish and mammals, making many targets identified in zebrafish screens applicable to mammals. Hematopoiesis in zebrafish occurs in two waves: the primitive or embryonic wave and the definitive or adult wave. Definitive hematopoietic stem cells arise in the aorta-gonad-mesonephros region (AGM) and express conserved markers such as runx1 and c-myb that allow for the detection of stem cells by whole-mount in situ hybridization (WISH). In this protocol, we will discuss a chemical screen in zebrafish embryos to detect compounds that expand or deplete hematopoietic stem cells (HSCs) in vivo. This type of screen represents a powerful tool to study HSCs in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amatruda, J. F., and Zon, L. I. (1999) Dissecting hematopoiesis and disease using the zebrafish. Dev Biol 216, 1–15.

    Article  CAS  PubMed  Google Scholar 

  2. Dooley, K., and Zon, L. I. (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10, 252–6.

    Article  CAS  PubMed  Google Scholar 

  3. Shafizadeh, E., and Paw, B. H. (2004) Zebrafish as a model of human hematologic disorders. Curr Opin Hematol 11, 255–61.

    Article  CAS  PubMed  Google Scholar 

  4. Galloway, J. L., and Zon, L. I. (2003) Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol 53, 139–58.

    Article  CAS  PubMed  Google Scholar 

  5. Kari, G., Rodeck, U., and Dicker, A. P. (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82, 70–80.

    Article  CAS  PubMed  Google Scholar 

  6. Lally, B. E., Geiger, G. A., Kridel, S., Arcury-Quandt, A. E., Robbins, M. E., Kock, N. D., Wheeler, K., Peddi, P., Georgakilas, A., Kao, G. D., and Koumenis, C. (2007) Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Cancer Res 67, 8791–9.

    Article  CAS  PubMed  Google Scholar 

  7. Davidson, A. J., and Zon, L. I. (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233–46.

    Article  CAS  PubMed  Google Scholar 

  8. de Jong, J. L., and Zon, L. I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 39, 481–501.

    Article  PubMed  Google Scholar 

  9. Hsia, N., and Zon, L. I. (2005) Transcriptional regulation of hematopoietic stem cell development in zebrafish. Exp Hematol 33, 1007–14.

    Article  CAS  PubMed  Google Scholar 

  10. North, T. E., Goessling, W., Walkley, C. R., Lengerke, C., Kopani, K. R., Lord, A. M., Weber, G. J., Bowman, T. V., Jang, I. H., Grosser, T., Fitzgerald, G. A., Daley, G. Q., Orkin, S. H., and Zon, L. I. (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–11.

    Article  CAS  PubMed  Google Scholar 

  11. Murphey, R. D., and Zon, L. I. (2006) Small molecule screening in the zebrafish. Methods 39, 255–61.

    Article  CAS  PubMed  Google Scholar 

  12. Mandrekar, N., and Thakur, N. L. (2008) Significance of the zebrafish model in the discovery of bioactive molecules from nature. Biotechnol Lett.

    Google Scholar 

  13. Barros, T. P., Alderton, W. K., Reynolds, H. M., Roach, A. G., and Berghmans, S. (2008) Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 154, 1400–13.

    Article  CAS  PubMed  Google Scholar 

  14. Murphey, R. D., Stern, H. M., Straub, C. T., and Zon, L. I. (2006) A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68, 213–9.

    Article  CAS  PubMed  Google Scholar 

  15. Jagadeeswaran, P., and Sheehan, J. P. (1999) Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis 25, 239–49.

    Article  CAS  PubMed  Google Scholar 

  16. Langenau, D. M., Ferrando, A. A., Traver, D., Kutok, J. L., Hezel, J. P., Kanki, J. P., Zon, L. I., Look, A. T., and Trede, N. S. (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 101, 7369–74.

    Article  CAS  PubMed  Google Scholar 

  17. Tseng, H. P., Hseu, T. H., Buhler, D. R., Wang, W. D., and Hu, C. H. (2005) Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva. Toxicol Appl Pharmacol 205, 247–58.

    Article  CAS  PubMed  Google Scholar 

  18. Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J. P., and Thisse, C. (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77, 505–19.

    Article  CAS  PubMed  Google Scholar 

  19. Parker, C. N., and Schreyer, S. K. (2004) Application of chemoinformatics to high-throughput screening: practical considerations. Methods Mol Biol 275, 85–110.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, F. (2005) Editorial opinion: chemoinformatics - a ten year update. Curr Opin Drug Discov Devel 8, 298–302.

    CAS  PubMed  Google Scholar 

  21. Elsalini, O. A., and Rohr, K. B. (2003) Phenylthiourea disrupts thyroid function in developing zebrafish. Dev Genes Evol 212, 593–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Trista E North for providing Fig. 1. We would also like to thank Trista E North, Jill L.O. de Jong, Xuining Le, and Richard M. White for providing their expertise in chemical screening and in particular Richard M.White for the chemoinformatics part of the protocol. Finally, we would like to thank Trista E North, Jill L.O. de Jong, and Richard M. White for careful review of the manuscript. Eirini Trompouki is supported by Jane Coffin Childs Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard I. Zon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Trompouki, E., Zon, L.I. (2010). Small Molecule Screen in Zebrafish and HSC Expansion. In: Ding, S. (eds) Cellular Programming and Reprogramming. Methods in Molecular Biology, vol 636. Humana Press. https://doi.org/10.1007/978-1-60761-691-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-691-7_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-690-0

  • Online ISBN: 978-1-60761-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics