Skip to main content

In Vitro Reprogramming of Pancreatic Cells to Hepatocytes

  • Protocol
  • First Online:
Cellular Programming and Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 636))

Abstract

Transdifferentiation is defined as the conversion of one cell type to another. One well-documented example of transdifferentiation is the conversion of pancreatic cells to hepatocytes. Here we describe a robust in vitro model to study pancreas to liver transdifferentiation. It is based on the addition of the synthetic glucocorticoid dexamethasone to the rat pancreatic exocrine cell line AR42J. Following glucocorticoid treatment, cells resembling hepatocytes are induced. Transdifferentiated hepatocytes express many of the properties of bona fide hepatocytes, e.g. production of albumin and ability to respond to xenobiotics. These hepatocytes can be used for studying liver function in vitro as well as studying the molecular basis of transdifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tosh, D., and Slack, J. M. (2002) How cells change their phenotype. Nat Rev Mol Cell Biol. 3, 187-94.

    Article  CAS  PubMed  Google Scholar 

  2. Deutsch, G., Jung, J., Zheng, M., Lora, J., and Zaret, K. S. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 128, 871-81.

    CAS  PubMed  Google Scholar 

  3. Rao, M. S., Dwivedi, R. S., Subbarao, V., Usman, M. I., Scarpelli, D. G., Nemali, M. R., Yeldandi, A., Thangada, S., Kumar, S., and Reddy, J. K. (1988) Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem Biophys Res Commun. 156, 131-6.

    Article  CAS  PubMed  Google Scholar 

  4. Rao, M. S., Subbarao, V., and Reddy, J. K. (1986) Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differ. 18, 109-17.

    Article  CAS  PubMed  Google Scholar 

  5. Reddy, J. K., Rao, M. S., Qureshi, S. A., Reddy, M. K., Scarpelli, D. G., and Lalwani, N. D. (1984) Induction and origin of hepatocytes in rat pancreas. J Cell Biol. 98, 2082-90.

    Article  CAS  PubMed  Google Scholar 

  6. Scarpelli, D. G., and Rao, M. S. (1981) Differentiation of regenerating pancreatic cells into hepatocyte-like cells. Proc Natl Acad Sci U S A. 78, 2577-81.

    Article  CAS  PubMed  Google Scholar 

  7. Krakowski, M. L., Kritzik, M. R., Jones, E. M., Krahl, T., Lee, J., Arnush, M., Gu, D., and Sarvetnick, N. (1999) Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am J Pathol. 154, 683-91.

    CAS  PubMed  Google Scholar 

  8. Eguchi, G., and Kodama, R. (1993) Transdifferentiation. Curr Opin Cell Biol. 5, 1023-8.

    Article  CAS  PubMed  Google Scholar 

  9. Longnecker, D. S., Lilja, H. S., French, J., Kuhlmann, E., and Noll, W. (1979) Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett. 7, 197-202.

    Article  CAS  PubMed  Google Scholar 

  10. Mashima, H., Ohnishi, H., Wakabayashi, K., Mine, T., Miyagawa, J., Hanafusa, T., Seno, M., Yamada, H., and Kojima, I. (1996) Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest. 97, 1647-54.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, J., Wang, X., Pineyro, M. A., and Egan, J. M. (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes. 48, 2358-66.

    Article  CAS  PubMed  Google Scholar 

  12. Logsdon, C. D., Moessner, J., Williams, J. A., and Goldfine, I. D. (1985) Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol. 100, 1200-8.

    Article  CAS  PubMed  Google Scholar 

  13. Burke, Z. D., Shen, C. N., Ralphs, K. L., and Tosh, D. (2006) Characterization of liver function in transdifferentiated hepatocytes. J Cell Physiol. 206, 147-59.

    Article  CAS  PubMed  Google Scholar 

  14. Kurash, J. K., Shen, C. N., and Tosh, D. (2004) Induction and regulation of acute phase proteins in transdifferentiated hepatocytes. Exp Cell Res. 292, 342-58.

    Article  CAS  PubMed  Google Scholar 

  15. Tosh, D., Shen, C. N., and Slack, J. M. (2002) Differentiated properties of hepatocytes induced from pancreatic cells. Hepatology. 36, 534-43.

    Article  CAS  PubMed  Google Scholar 

  16. Shen, C. N., Slack, J. M., and Tosh, D. (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol. 2, 879-87.

    Article  CAS  PubMed  Google Scholar 

  17. Lardon, J., De Breuck, S., Rooman, I., Van Lommel, L., Kruhoffer, M., Orntoft, T., Schuit, F., and Bouwens, L. (2004) Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology. 39, 1499-507.

    Article  CAS  PubMed  Google Scholar 

  18. Percival, A. C., and Slack, J. M. (1999) Analysis of pancreatic development using a cell lineage label. Exp Cell Res. 247, 123-32.

    Article  CAS  PubMed  Google Scholar 

  19. Shen, C. N., Seckl, J. R., Slack, J. M., and Tosh, D. (2003) Glucocorticoids suppress beta-cell development and induce hepatic metaplasia in embryonic pancreas. Biochem J. 375, 41-50.

    Article  CAS  PubMed  Google Scholar 

  20. Kamiya, A., Kinoshita, T., Ito, Y., Matsui, T., Morikawa, Y., Senba, E., Nakashima, K., Taga, T., Yoshida, K., Kishimoto, T., and Miyajima, A. (1999) Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. Embo J. 18, 2127-36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the Medical Research Council and Wellcome Trust for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eberhard, D., O’Neill, K., Burke, Z.D., Tosh, D. (2010). In Vitro Reprogramming of Pancreatic Cells to Hepatocytes. In: Ding, S. (eds) Cellular Programming and Reprogramming. Methods in Molecular Biology, vol 636. Humana Press. https://doi.org/10.1007/978-1-60761-691-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-691-7_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-690-0

  • Online ISBN: 978-1-60761-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics