Skip to main content

Cell Fusion-Induced Reprogramming

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 636))

Abstract

Genomic reprogramming can be accomplished by five different types of methods: nuclear transfer, cell fusion, in vitro culture, introduction of egg extract, and transduction of transcription factors. We have shown that fusion-induced reprogramming is an efficient method for reprogramming differentiated somatic cells to a pluripotential state (pluripotential reprogramming) – Oct4 gene reactivation occurs within 1–2 days postfusion of somatic cells with pluripotent stem cells. Reactivation of Oct4 can be monitored by detection of the GFP signal from the Oct4-GFP transgene of somatic cells. In the current report, we fused double transgenic (OG2/ROSA26) somatic cells with pluripotent embryonic stem (ES) cells, and demonstrated the presence of the somatic cell genome in all GFP-positive ES-like colony-forming cells, confirming their identity as the cell fusion hybrids.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Do, J.T., Han, D.W., Gentile, L., Sobek-Klocke, I., Stehling, M., Lee, H.T., et al. (2007) Erasure of cellular memory by fusion with pluripotent cells. Stem Cells. 25, 1013-1020.

    Article  CAS  PubMed  Google Scholar 

  2. Tada, M., Morizane, A., Kimura, H., Kawasaki, H., Ainscough, J.F., Sasai, Y., et al. (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn. 227, 504-510.

    Article  CAS  PubMed  Google Scholar 

  3. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. and Tada, T. (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol. 11, 1553-1558.

    Article  CAS  PubMed  Google Scholar 

  4. Do, J.T., Han, D.W. and Scholer, H.R. (2006) Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev. 2, 257-264.

    Article  CAS  PubMed  Google Scholar 

  5. Silva, J., Chambers, I., Pollard, S. and Smith, A. (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature. 441, 997-1001.

    Article  CAS  PubMed  Google Scholar 

  6. Wong, C.C., Gaspar-Maia, A., Ramalho-Santos, M. and Reijo Pera, R.A. (2008) High-efficiency stem cell fusion-mediated assay reveals Sall4 as an enhancer of reprogramming. PLoS One. 3, e1955.

    Article  PubMed  Google Scholar 

  7. Ma, D.K., Chiang, C.H., Ponnusamy, K., Ming, G.L. and Song, H. (2008) G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells. 26, 2131-2141.

    Article  CAS  PubMed  Google Scholar 

  8. Do, J.T., Han, D.W., Gentile, L., Sobek-Klocke, I., Stehling, M. and Scholer, H.R. (2008) Enhanced Reprogramming of Xist by induced upregulation of Tsix and Dnmt3a. Stem Cells. 26, 2821-2831.

    Article  CAS  PubMed  Google Scholar 

  9. Pells, S. and McWhir, J. (2004) Studying nuclear reprogramming with cell hybrids. Methods Mol Biol. 254, 301-312.

    PubMed  Google Scholar 

  10. Tada, M., Tada, T., Lefebvre, L., Barton, S.C. and Surani, M.A. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510-6520.

    Article  CAS  PubMed  Google Scholar 

  11. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., et al. (2004) Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078-1083.

    Article  CAS  PubMed  Google Scholar 

  12. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 95, 379-391.

    Article  CAS  PubMed  Google Scholar 

  13. Niwa, H., Miyazaki, J. and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 24, 372-376.

    Article  CAS  PubMed  Google Scholar 

  14. Do, J.T. and Scholer, H.R. (2005) Comparison of neurosphere cells with cumulus cells after fusion with embryonic stem cells: reprogramming potential. Reprod Fertil Dev. 17, 143-149.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans R. Schöler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Do, J.T., Schöler, H.R. (2010). Cell Fusion-Induced Reprogramming. In: Ding, S. (eds) Cellular Programming and Reprogramming. Methods in Molecular Biology, vol 636. Humana Press. https://doi.org/10.1007/978-1-60761-691-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-691-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-690-0

  • Online ISBN: 978-1-60761-691-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics