Skip to main content

Protein Tagging for Chromatin Immunoprecipitation from Arabidopsis

  • Protocol
  • First Online:
Plant Reverse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 678))

Abstract

A powerful method to identify binding sites in target genes is chromatin immunoprecipitation (ChIP), which allows the purification of in vivo formed complexes of a DNA-binding protein and associated DNA. Briefly, the method involves the fixation of plant tissue and the isolation of the total protein-DNA mixture, followed by an immunoprecipitation step with an antibody directed against the protein of interest and, subsequently, the DNA can be purified. Finally, the DNA can be analyzed by PCR for the enrichment of specific regions.

A drawback of ChIP is that for each protein another antibody is needed. To overcome this, a generic strategy is possible using tags fused to the protein of interest. In this case, only antibody is needed against the tag. This protocol describes the tagging of proteins and how to perform ChIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Folter, S., and Angenent, G. C. (2006) Trans meets cis in MADS science. Trends Plant Sci 11, 224–31.

    Article  PubMed  Google Scholar 

  2. Hannenhalli, S. (2008) Eukaryotic transcription factor binding sites – modeling and integrative search methods. Bioinformatics 24, 1325–31.

    Article  PubMed  CAS  Google Scholar 

  3. Orlando, V. (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25, 99–104.

    Article  PubMed  CAS  Google Scholar 

  4. Wu, J., Smith, L. T., Plass, C., and Huang, T. H. (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66, 6899–902.

    Article  PubMed  CAS  Google Scholar 

  5. Buck, M. J., and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–60.

    Article  PubMed  CAS  Google Scholar 

  6. Mockler, T. C., and Ecker, J. R. (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15.

    Article  PubMed  CAS  Google Scholar 

  7. Wold, B., and Myers, R. M. (2008) Sequence census methods for functional genomics. Nat Methods 5, 19–21.

    Article  PubMed  CAS  Google Scholar 

  8. Mardis, E. R. (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4, 613–4.

    Article  PubMed  CAS  Google Scholar 

  9. Odell, J. T., Nagy, F., and Chua, N. H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810–12.

    Article  PubMed  CAS  Google Scholar 

  10. Kay, R., Chan, A., Daly, M., and McPherson, J. (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–302.

    Article  PubMed  CAS  Google Scholar 

  11. de Folter, S., Urbanus, S. L., van Zuijlen, L. G., Kaufmann, K., and Angenent, G. C. (2007) Tagging of MADS domain proteins for chromatin immunoprecipitation. BMC Plant Biol 7, 47.

    Article  PubMed  Google Scholar 

  12. Hearn, M. T. W., and Acosta, D. (2001) Applications of novel affinity cassette methods: use of peptide fusion handles for the purification of recombinant proteins. J Mol Recognit 14, 323–69.

    Article  PubMed  CAS  Google Scholar 

  13. Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J., and Tan, S. (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41, 98–105.

    Article  PubMed  CAS  Google Scholar 

  14. Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60, 523–33.

    PubMed  CAS  Google Scholar 

  15. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–5.

    Article  PubMed  CAS  Google Scholar 

  16. Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6, 325–30.

    Article  PubMed  CAS  Google Scholar 

  17. Schmid, J. A., and Neumeier, H. (2005) Evolutions in science triggered by green fluorescent protein (GFP). Chembiochem 6, 1149–56.

    Article  PubMed  CAS  Google Scholar 

  18. Urbanus, S., de Folter, S., Shchennikova, A., Kaufmann, K., Immink, R., and Angenent, G. (2009) In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol 9, 5.

    Article  PubMed  Google Scholar 

  19. Ito, T., Takahashi, N., Shimura, Y., and Okada, K. (1997) A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol 38, 248–58.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, H., Tang, W., Zhu, C., and Perry, S. E. (2002) A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J 32, 831–43.

    Article  PubMed  CAS  Google Scholar 

  21. Gómez-Mena, C., de Folter, S., Costa, M. M. R., Angenent, G. C., and Sablowski, R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429–38.

    Article  PubMed  Google Scholar 

  22. Curtis, M. D., and Grossniklaus, U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133, 462–9.

    Article  PubMed  CAS  Google Scholar 

  23. Clough, S. J., and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–43.

    Article  PubMed  CAS  Google Scholar 

  24. Karimi, M., Inze, D., and Depicker, A. (2002) GATEWAY(TM) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7, 193–95.

    Article  PubMed  CAS  Google Scholar 

  25. Karimi, M., Depicker, A., and Hilson, P. (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145, 1144–54.

    Article  PubMed  CAS  Google Scholar 

  26. Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C. S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45, 616–29.

    Article  PubMed  CAS  Google Scholar 

  27. Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., Niwa, Y., Watanabe, Y., Nakamura, K., Kimura, T., and Ishiguro, S. (2007) Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71, 2095–100.

    Article  PubMed  CAS  Google Scholar 

  28. Aparicio, O., Geisberg, J. V., and Struhl, K. (2004) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr Protoc Cell Biol Chapter 17, Unit 17.7.

    Google Scholar 

Download references

Acknowledgments

This work was previously financed by the Netherlands Proteomics Centre (NPC) and now the work in de Folter laboratory is financed by the Mexican Science Council (CONACyT 82826) and CONCyTEG (08-03-K662-116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan de Folter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Folter, S. (2011). Protein Tagging for Chromatin Immunoprecipitation from Arabidopsis . In: Pereira, A. (eds) Plant Reverse Genetics. Methods in Molecular Biology, vol 678. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-682-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-682-5_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-681-8

  • Online ISBN: 978-1-60761-682-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics