Skip to main content

Transposon Insertional Mutagenesis in Rice

  • Protocol
  • First Online:
Book cover Plant Reverse Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 678))

Abstract

Insertion mutants offer one of the direct ways to relate a gene to its function by employing forward or reverse genetics approaches. Both T-DNA and transposon insertional mutants are being produced in several crops, including rice, the first cereal with its complete genome sequenced. Transposons have several advantages over T-DNA including the ability to produce multiple independent insertion lines from individual starter lines, as well as producing revertants by remobilization. With our new gene constructs, and a two-component transposon iAc/Ds mutagenesis protocol, we have improved both gene trapping and screening efficiencies in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirochika, H., Guiderdoni, E., An, G., Hsing, Y. I., Eun, M. Y., Han, C. D., Upadhyaya, N., Ramachandran, S., Zhang, Q., Pereira, A., Sundaresan, V., and Leung, H. (2004) Rice mutant resources for gene discovery. Plant. Mol. Biol. 54, 325–334.

    Article  PubMed  CAS  Google Scholar 

  2. An, G., Lee, S., Kim, S. H., and Kim, S. R. (2005) Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46, 14–22.

    Article  PubMed  CAS  Google Scholar 

  3. An, S., Park, S., Jeong, D. H., Lee, D. Y., Kang, H. G., Yu, J. H., Hur, J., Kim, S. R., Kim, Y. H., Lee, M., Han, S., Kim, S. J., Yang, J., Kim, E., Wi, S. J., Chung, H. S., Hong, J. P., Choe, V., Lee, H. K., Choi, J. H., Nam, J., Park, P. B., Park, K. Y., Kim, W. T., Choe, S., Lee, C. B., and An, G. (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040–2047.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, S., Jin, W., Wang, M., Zhang, F., Zhou, J., Jia, Q., Wu, Y., Liu, F., and Wu, P. (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J. 36, 105–113.

    Article  PubMed  CAS  Google Scholar 

  5. Sallaud, C., Gay, C., Larmande, P., Bes, M., Piffanelli, P., Piegu, B., Droc, G., Regad, F., Bourgeois, E., Meynard, D., Perin, C., Sabau, X., Ghesquiere, A., Glaszmann, J. C., Delseny, M., and Guiderdoni, E. (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–464.

    Article  PubMed  CAS  Google Scholar 

  6. Chin, H. G., Choe, M. S., Lee, S. -H., Park, S. H., Koo, J., Kim, N. Y., Lee, J. J., Oh, B. G., Yi, G. H., Kim, S. C., Choi, H. C., Cho, M. J., and Han, C. -D. (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 616–623.

    Article  Google Scholar 

  7. Greco, R., Ouwerkerk, P. B., Taal, A. J., Sallaud, C., Guiderdoni, E., Meijer, A. H., Hoge, J. H., and Pereira, A. (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol. Genet. Genomics 270, 514–523.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu, Q. -H., Eun, M. Y., Han, C. -D., Kumar, C. S., Pereira, A., Ramachandran, S., Sundaresan, V., Eamens, A. L., Upadhyaya, N. M., and Wu, R. (2007) Transposon insertional mutants: a resource for rice functional genomics, in Rice Functional Genomics – Challenges, Progress and Prospects (Upadhyaya, N. M., Ed.), Springer, New York, pp. 223–271.

    Chapter  Google Scholar 

  9. Springer, P. S. (2000) Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020.

    PubMed  CAS  Google Scholar 

  10. Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J. D., Dean, C., Ma, H., and Martienssen, R. (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  11. Upadhyaya, N. M., Zhu, Q. H., Zhou, X. R., Eamens, A. L., Hoque, M. S., Ramm, K., Shivakkumar, R., Smith, K. F., Pan, S. T., Li, S., Peng, K., Kim, S. J., and Dennis, E. S. (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor. Appl. Genet. 112, 1326–1341.

    Article  PubMed  CAS  Google Scholar 

  12. Lu, H. -J., Zhou, X. -R., Gong, Z. -X., and Upadhyaya, N. M. (2001) Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust. J. Plant. Physiol. 28, 241–248.

    CAS  Google Scholar 

  13. Kumar, S. C., and Narayanan, K. K. (1997) Gene and enhancer trap constructs for isolating genetic regions from rice. Rice Biotechnol. Q. 31, 17–18.

    Google Scholar 

  14. Upadhyaya, N. M., Zhou, X. -R., Ramm, K., Zhu, Q. -H., Wu, L. -M., Eamens, A., Sivakumar, R., Kato, T., Yun, D. -W., Kumar, S., Narayanan, K. K., Thomas, G., Peacock, W. J., and Dennis, E. S. (2002) An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Funct. Plant Biol. 29, 547–559.

    Article  CAS  Google Scholar 

  15. Eamens, A. L., Blanchard, C. L., Dennis, E. S., and Upadhyaya, N. M. (2004) A bidirectional gene trap construct for T-DNA and Ds mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol. J. 2, 367–380.

    Article  PubMed  CAS  Google Scholar 

  16. Wang, M., Upadhyaya, N. M., Brettell, R. I. S., and Waterhouse, P. M. (1997) Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J. Genet. Breed. 51, 325–334.

    CAS  Google Scholar 

  17. Kolesnik, T., Szeverenyi, I., Bachmann, D., Kumar, C. S., Jiang, S., Ramamoorthy, R., Cai, M., Ma, Z. G., Sundaresan, V., and Ramachandran, S. (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J. 37, 301–314.

    Article  PubMed  CAS  Google Scholar 

  18. Chiu, W. -L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996) Engineered GFP as a vital reporter for plants. Curr. Biol. 6, 325–330.

    Article  PubMed  CAS  Google Scholar 

  19. Hartley, R. W. (1988) Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202, 913–915.

    Article  PubMed  CAS  Google Scholar 

  20. Hanahan, D. (1983) Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557.

    Article  PubMed  CAS  Google Scholar 

  21. Lazo, G. R., Stein, P. A., and Ludwig, R. A. (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967.

    Article  PubMed  CAS  Google Scholar 

  22. Toki, S. (1997) Rapid and efficient Agrobacterium-meditated transformation in rice. Plant Mol. Biol. Rep. 15, 16–21.

    Article  CAS  Google Scholar 

  23. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. U. S. A. 77, 7347–7351.

    Article  PubMed  CAS  Google Scholar 

  24. Miller, J. H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory: Cold Spring Harbor, New York.

    Google Scholar 

  25. Thompson, J. A., Abdullah, R., and Cocking, H. (1986) Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci. 47, 123–133.

    Article  Google Scholar 

  26. Li, L., Qu, R., Kochko, A. D., Fauquet, C., and Beachy, R. N. (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12, 250–255.

    Article  Google Scholar 

  27. Upadhyaya, N. M., Surin, B., Schünmann, P., Ramm, K., Gaudron, J., Taylor, W. C., and Waterhouse, P. M. (2000) Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo with modified promoters and selectable markers. Aust. J. Plant. Physiol. 27, 201–210.

    CAS  Google Scholar 

  28. Coffman, W. R., and Herrera, R. M. (1980) Rice, in Hybridization of Crop Plants (Fehr, W. R., and Hadley, H. H., Eds.), ASA and CSSA, Madison, pp. 511–522.

    Google Scholar 

  29. Kurup, S., Runions, J., Kohler, U., Laplaze, L., Hodge, S., and Haseloff, J. (2005) Marking cell lineages in living tissues. Plant J. 42, 444–453.

    Article  PubMed  CAS  Google Scholar 

  30. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  31. Devereux, J., Haeberli, P., and Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  33. Helliwell, C. A., and Waterhouse, P. M. (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Meth. Enzymol. 392, 24–35.

    Article  PubMed  CAS  Google Scholar 

  34. Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A., and Carpenter, R. (Eds.) (1989) Consequences and Mechanisms of Transposition in Antirrhinum majus, American Society of Microbiology, Washington DC, USA.

    Google Scholar 

  35. Das, L., and Martienssen, R. (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7, 287–294.

    PubMed  CAS  Google Scholar 

  36. Gerats, A. G., Huits, H., Vrijlandt, E., Marana, C., Souer, E., and Beld, M. (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2, 1121–1128.

    PubMed  CAS  Google Scholar 

  37. Koes, R., Souer, E., van Houwelingen, A., Mur, L., Spelt, C., Quattrocchio, F., Wing, J., Oppedijk, B., Ahmed, S., Maes, T., and et al. (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci. U. S. A. 92, 8149–8153.

    Article  PubMed  CAS  Google Scholar 

  38. Walbot, V. (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 49–82.

    Article  CAS  Google Scholar 

  39. Krishnan, A., Guiderdoni, E., An, G., Hsing, Y. I., Han, C. D., Lee, M. C., Yu, S. M., Upadhyaya, N., Ramachandran, S., Zhang, Q., Sundaresan, V., Hirochika, H., Leung, H., and Pereira, A. (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol. 149, 165–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Upadhyaya, N.M., Zhu, QH., Bhat, R.S. (2011). Transposon Insertional Mutagenesis in Rice. In: Pereira, A. (eds) Plant Reverse Genetics. Methods in Molecular Biology, vol 678. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-682-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-682-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-681-8

  • Online ISBN: 978-1-60761-682-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics