Skip to main content

Preparation of Lipid Membrane Surfaces for Molecular Interaction Studies by Surface Plasmon Resonance Biosensors

  • Protocol
  • First Online:
Book cover Surface Plasmon Resonance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 627))

Abstract

Surface plasmon resonance has become one of the most important techniques for studying bimolecular interactions. Most of the researchers are using it to study protein–protein interactions, but in recent years membrane model systems have also become available and this makes it possible to study protein–membrane interactions as well. In this review chapter we describe possible ways to prepare lipid membrane surfaces on various sensor chips and some of the experimental considerations one has to take into account when performing such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich, R. L., and Myszka, D. G. (2008) Survey of the year 2007 commercial optical biosensor literature. J. Mol. Recognit. 21, 355–400.

    Article  CAS  PubMed  Google Scholar 

  2. Beseničar, M., Maček, P., Lakey, J. H., and Anderluh, G. (2006) Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 141, 169–78.

    Article  PubMed  Google Scholar 

  3. Cho, W., Bittova, L., and Stahelin, R. V. (2001) Membrane binding assays for peripheral proteins. Anal. Biochem. 296, 153–61.

    Article  CAS  PubMed  Google Scholar 

  4. Cooper, M. A. (2004) Advances in membrane receptor screening and analysis. J. Mol. Recognit. 17, 286–315.

    Article  CAS  PubMed  Google Scholar 

  5. Narayan, K., and Lemmon, M. A. (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39, 122–33.

    Article  CAS  PubMed  Google Scholar 

  6. Mozsolits, H., and Aguilar, M. I. (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 66, 3–18.

    Article  CAS  PubMed  Google Scholar 

  7. Mozsolits, H., Thomas, W. G., and Aguilar, M. I. (2003) Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J. Pept. Sci. 9, 77–89.

    Article  CAS  PubMed  Google Scholar 

  8. Anderluh, G., Maček, P., and Lakey, J. H. (2003) Peeking into a secret world of pore-forming toxins: membrane binding processes studied by surface plasmon resonance. Toxicon 42, 225–28.

    Article  CAS  PubMed  Google Scholar 

  9. Stahelin, R. V., and Cho, W. (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40, 4672–78.

    Article  CAS  PubMed  Google Scholar 

  10. Danelian, E., Karlen, A., Karlsson, R., Winiwarter, S., Hansson, A., Lofas, S., Lennernas, H., and Hamalainen, M. D. (2000) SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans. J. Med. Chem. 43, 2083–86.

    Article  CAS  PubMed  Google Scholar 

  11. Baird, C. L., Courtenay, E. S., and Myszka, D. G. (2002) Surface plasmon resonance characterization of drug/liposome interactions. Anal. Biochem. 310, 93–99.

    Article  CAS  PubMed  Google Scholar 

  12. Abdiche, Y. N., and Myszka, D. G. (2004) Probing the mechanism of drug/lipid membrane interactions using Biacore. Anal. Biochem. 328, 233–43.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, K., Cho, S., Park, J. H., Byun, Y., Chung, H., Kwon, I. C., and Jeong, S. Y. (2004) Surface plasmon resonance studies of the direct interaction between a drug/intestinal brush border membrane. Pharm. Res. 21, 1233–39.

    Article  CAS  PubMed  Google Scholar 

  14. Frostell-Karlsson, A., Widegren, H., Green, C. E., Hamalainen, M. D., Westerlund, L., Karlsson, R., Fenner, K., and van de Waterbeemd, H. (2005) Biosensor analysis of the interaction between drug compounds and liposomes of different properties; a two-dimensional characterization tool for estimation of membrane absorption. J. Pharm. Sci. 94, 25–37.

    Article  CAS  PubMed  Google Scholar 

  15. Karlsson, O. P., and Lofas, S. (2002) Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors. Anal. Biochem. 300, 132–38.

    Article  CAS  PubMed  Google Scholar 

  16. Stenlund, P., Babcock, G. J., Sodroski, J., and Myszka, D. G. (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal. Biochem. 316, 243–50.

    Article  CAS  PubMed  Google Scholar 

  17. Locatelli-Hoops, S., Remmel, N., Klingenstein, R., Breiden, B., Rossocha, M., Schoeniger, M., Koenigs, C., Saenger, W., and Sandhoff, K. (2006) Saposin A mobilizes lipids from low cholesterol and high bis(monoacylglycerol)phosphate-containing membranes: patient variant Saposin A lacks lipid extraction capacity. J. Biol. Chem. 281, 32451–60.

    Article  CAS  PubMed  Google Scholar 

  18. Remmel, N., Locatelli-Hoops, S., Breiden, B., Schwarzmann, G., and Sandhoff, K. (2007) Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. Unglycosylated patient variant saposin B lacks lipid-extraction capacity. FEBS J. 274, 3405–20.

    Article  CAS  PubMed  Google Scholar 

  19. Beseničar Podlesnik, M., Bavdek, A., Kladnik, A., Maček, P., and Anderluh, G. (2008) Kinetics of cholesterol extraction from lipid membranes by methyl-[beta]-cyclodextrin – A surface plasmon resonance approach. Biochim. Biophys. Acta 1778, 175–84.

    Article  Google Scholar 

  20. Ferracci, G., Seagar, M., Joël, C., Miquelis, R., and Léveque, C. (2004) Real time analysis of intact organelles using surface plasmon resonance. Anal. Biochem. 334, 367–75.

    Article  CAS  PubMed  Google Scholar 

  21. Vidic, J. M., Grosclaude, J., Persuy, M. A., Aioun, J., Salesse, R., and Pajot-Augy, E. (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip. 6, 1026–32.

    Article  CAS  PubMed  Google Scholar 

  22. Vidic, J., Grosclaude, J., Monnerie, R., Persuy, M. A., Badonnel, K., Baly, C., Caillol, M., Briand, L., Salesse, R., and Pajot-Augy, E. (2008) On a chip demonstration of a functional role for Odorant Binding Protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip. 8, 678–88.

    Article  CAS  PubMed  Google Scholar 

  23. Cooper, M. A., Try, A. C., Carroll, J., Ellar, D. J., and Williams, D. H. (1998) Surface plasmon resonance analysis at a supported lipid monolayer. Biochim. Biophys. Acta 1373, 101–11.

    Article  CAS  PubMed  Google Scholar 

  24. Stenberg, E., Persson, B., Roos, H., and Urbaniczky, C. (1990) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interf. Sci. 143, 513–26.

    Article  Google Scholar 

  25. Lang, H., Duschl, C., and Vogel, H. (1994) A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir 10, 197–210.

    Article  CAS  Google Scholar 

  26. Stora, T., Lakey, J. H., and Vogel, H. (1999) Ion-channel gating in transmembrane receptor proteins: functional activity in tethered lipid membranes. Angew. Chem. Int. Ed. 38, 389–91.

    Article  CAS  Google Scholar 

  27. Hong, Q., Gutiérrez-Aguirre, I., Barlič, A., Malovrh, P., Kristan, K., Podlesek, Z., Maček, P., Turk, D., González-Mañas, J. M., Lakey, J. H., and Anderluh, G. (2002) Two-step membrane binding by Equinatoxin II, a pore-forming toxin from the sea anemone, involves an exposed aromatic cluster and a flexible helix. J. Biol. Chem. 277, 41916–24.

    Article  CAS  PubMed  Google Scholar 

  28. Heyse, S., Ernst, O. P., Dienes, Z., Hofmann, K. P., and Vogel, H. (1998) Incorporation of rhodopsin in laterally structured supported membranes: observation of transducin activation with spatially and time-resolved surface plasmon resonance. Biochemistry 37, 507–22.

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt, E. K., Liebermann, T., Kreiter, M., Jonczyk, A., Naumann, R., Offenhausser, A., Neumann, E., Kukol, A., Maelicke, A., and Knoll, W. (1998) Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy. Biosens. Bioelectron. 13, 585–91.

    Article  CAS  PubMed  Google Scholar 

  30. Masson, L., Mazza, A., and Brousseau, R. (1994) Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Anal. Biochem. 218, 405–12.

    Article  CAS  PubMed  Google Scholar 

  31. Stachowiak, O., Dolder, M., and Wallimann, T. (1996) Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 35, 15522–28.

    Article  CAS  PubMed  Google Scholar 

  32. MacKenzie, C. R., Hirama, T., Lee, K. K., Altman, E., and Young, N. M. (1997) Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272, 5533–38.

    Article  CAS  PubMed  Google Scholar 

  33. MacKenzie, C. R., and Hirama, T. (2000) Quantitative analyses of binding affinity and specificity for glycolipid receptors by surface plasmon resonance. Methods Enzymol. 312, 205–16.

    Article  CAS  PubMed  Google Scholar 

  34. Graneli, A., Edvardsson, M., and Hook, F. (2005) DNA-Based Formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. ChemPhysChem. 5, 729–33.

    Article  Google Scholar 

  35. Wikstrom, A., and Deinum, J. (2007) Probing the interaction of coagulation factors with phospholipid vesicle surfaces by surface plasma resonance. Anal. Biochem. 362, 98–107.

    Article  PubMed  Google Scholar 

  36. Graneli, A., Benkoski, J. J., and Hook, F. (2007) Characterization of a proton pumping transmembrane protein incorporated into a supported three-dimensional matrix of proteoliposomes. Anal. Biochem. 367, 87–94.

    Article  CAS  PubMed  Google Scholar 

  37. Cooper, M. A., Hansson, A., Lofas, S., and Williams, D. H. (2000) A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 277, 196–205.

    Article  CAS  PubMed  Google Scholar 

  38. Erb, E. M., Chen, X., Allen, S., Roberts, C. J., Tendler, S. J., Davies, M. C., and Forsen, S. (2000) Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal. Biochem. 280, 29–35.

    Article  CAS  PubMed  Google Scholar 

  39. Anderluh, G., Beseničar, M., Kladnik, A., Lakey, J. H., and Maček, P. (2005) Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin. Anal. Biochem. 344, 43–52.

    Article  CAS  PubMed  Google Scholar 

  40. Bavdek, A., Gekara, N. O., Priselac, D., Gutiérrez-Aguirre, I., Darji, A., Chakraborty, T., Maček, P., Lakey, J. H., Weiss, S., and Anderluh, G. (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Biochemistry 46, 4425–37.

    Article  CAS  PubMed  Google Scholar 

  41. Bakrač, B., Gutiérrez-Aguirre, I., Podlesek, Z., Sonnen, A. F., Gilbert, R. J., Maček, P., Lakey, J. H., and Anderluh, G. (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J. Biol. Chem. 283, 18665–77.

    Article  PubMed  Google Scholar 

  42. Schlattner, U., and Wallimann, T. (2000) A quantitative approach to membrane binding of human ubiquitous mitochondrial creatine kinase using surface plasmon resonance. J. Bioenerg. Biomembr. 32, 123–31.

    Article  CAS  PubMed  Google Scholar 

  43. Schlattner, U., and Wallimann, T. (2000) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J. Biol. Chem. 275, 17314–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Slovenian Research Agency for support and Vesna Hodnik for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Beseničar, M.P., Anderluh, G. (2010). Preparation of Lipid Membrane Surfaces for Molecular Interaction Studies by Surface Plasmon Resonance Biosensors. In: Mol, N., Fischer, M. (eds) Surface Plasmon Resonance. Methods in Molecular Biology, vol 627. Humana Press. https://doi.org/10.1007/978-1-60761-670-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-670-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-669-6

  • Online ISBN: 978-1-60761-670-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics