Skip to main content

Small Molecule Selectivity and Specificity Profiling Using Functional Protein Microarrays

  • Protocol
  • First Online:
Microarray Methods for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 632))

  • 1623 Accesses

Abstract

Small molecules interact with proteins to perturb their functions, a property that has been exploited both for research applications and to produce therapeutic agents for disease treatment. Commonly utilized approaches for identifying the target proteins for a small molecule have limitations in terms of throughput and resource consumption and lack a mechanism to broadly assess the selectivity profile of the small molecule. Here we describe how protein microarray technology can be applied to the study of small molecule-protein interactions using tritiated small molecules. Protein arrays comprising thousands of full-length functional proteins facilitate target identification for those small molecules discovered in cell-based phenotypic assays and both target validation and off-target binding assessment for compounds discovered in target-based screens. The assays are highly reproducible, sensitive, and scalable, and provide an enabling technology for small molecule selectivity profiling in the context of drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Predki PF (2004) Functional protein microarrays: ripe for discovery. Curr Opin Chem Biol 8:8-13

    Article  PubMed  CAS  Google Scholar 

  2. Boyle SN, Michaud GA, Schweitzer B, Predki PF, Koleske AJ (2007) A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation. Curr Biol 17:1-7

    Article  Google Scholar 

  3. Gupta R, Kus B, Fladd C, Wasmuth J, Tonikian R, Sidhu S, Krogan NJ, Parkinson J, Rotin D (2007) Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Systems Biol 3(116):1-12

    Google Scholar 

  4. Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci USA 104:17494-17499

    Article  PubMed  CAS  Google Scholar 

  5. Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Abunoki H (2008) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 35:16-35

    Article  PubMed  Google Scholar 

  6. Schnack C, Hengerer B, Gillardon F (2008) Identification of novel substrates for Cdk5 and new targets for Cdk5 inhibitors using high-density protein microarrays. Proteomics 8:1980-6

    Article  PubMed  CAS  Google Scholar 

  7. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289:1760-3

    PubMed  CAS  Google Scholar 

  8. Ge H (2000) UPA, a universal protein array system for quantitative detection of protein-protein, protein-DNA, protein-RNA, and protein-ligand interactions. Nucleic Acids Res 28:e3

    Article  PubMed  CAS  Google Scholar 

  9. Fang Y, Frutos AG, Lahiri J (2002) Membrane protein microarrays. J Am Chem Soc 124:2394-5

    Article  PubMed  CAS  Google Scholar 

  10. Schweitzer B, Predki P, Snyder M (2003) Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics 3:2190-9

    Article  PubMed  CAS  Google Scholar 

  11. Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101:16594-9

    Article  PubMed  CAS  Google Scholar 

  12. Singh J, Salcius M, Liu S-W, Staker BL, Mishra R, Thurmond J, Michaud G, Mattoon DR, Printen J, Christensen J, Bjornsson JM, Pollok BA, Kiledjian M, Stewart L, Jarecki J, Gurney ME (2008) DcpS as a therapeutic target for Spinal Muscular Atrophy. ACS Chem Biol 3:711-22

    Article  PubMed  CAS  Google Scholar 

  13. Zhang J-H, Chung TDY, Oldenburg KR (2000) Confirmation of primary active substances from high-throughput screening of chemical and biological populations: A statistical approach and practical considerations. J Com Chem 2:258-265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Freeman-Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kraus, P.R., Meng, L., Freeman-Cook, L. (2010). Small Molecule Selectivity and Specificity Profiling Using Functional Protein Microarrays. In: Chittur, S.V. (eds) Microarray Methods for Drug Discovery. Methods in Molecular Biology, vol 632. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-663-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-663-4_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-662-7

  • Online ISBN: 978-1-60761-663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics