Advertisement

HELP (HpaII Tiny Fragment Enrichment by Ligation-Mediated PCR) Assay for DNA Methylation Profiling of Primary Normal and Malignant B Lymphocytes

  • Rita Shaknovich
  • Maria E. Figueroa
  • Ari Melnick
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 632)

Abstract

The role of cytosine methylation in the regulation of gene expression during normal development and malignant transformation is currently under intense investigation. An ever increasing body of evidence demonstrates that carcinogenesis is associated with aberrant DNA methylation of the promoters of tumor suppressor genes (Chin Med J (Engl) 111:1028-1030, 1998; Leukemia 17:2533-2535, 2003), hypomethylation of oncogenes (Toxicol Appl Pharmacol 206:288-298, 2005; Toxicology 50:231-245, 1988), and concurrent loss of methylation in the intergenic areas and gene bodies, which may lead to genomic instability and chromosomal fragility (Cytogenet Cell Genet 89:121-128, 2000). Single locus methylation assays have focused largely on specific known tumor suppressor genes or oncogenes (Chin Med J (Engl) 111:1028-1030, 1998; Cancer Res 57:594-599, 1997; Hum Genet 94:491-496, 1994; Mol Cell Biol 14:4225-4232, 1994; Gastroenterology 116:394-400, 1999). Such approaches, while being useful, have clear limitations. With the advent of genome-wide microarray-based techniques, it has become possible to perform genome-wide exploratory studies to better understand genomic patterning of DNA methylation and also to discover new potential disease-specific epigenetic lesions (J Cell Biochem 88:138-143, 2003; Genome Res 16:1075-1083, 2006). In order to capture this type of information from primary human tissues, we have adopted and optimized the HELP assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR) to compare and contrast the abundance of cytosine methylation of genomic regions that are relatively enriched for CpG dinucleotides. While we have mainly used a custom NimbleGen-Roche high-density oligonucleotide microarray containing 25,626 HpaII amplifiable fragments, many other microarray platforms or high throughput sequencing strategies can be used with HELP.

Key words

Epigenomics DNA methylation Genomic microarray HELP assay Gene regulation 

References

  1. 1.
    Chen W, Zhu J, Liu J, Tan S (1998) Methylation of p16 gene in hematological malignancies. Chin Med J (Engl) 111:1028-1030Google Scholar
  2. 2.
    Chim CS, Fung TK, Liang R (2003) Disruption of INK4/CDK/Rb cell cycle pathway by gene hypermethylation in multiple myeloma and MGUS. Leukemia 17:2533-2535PubMedCrossRefGoogle Scholar
  3. 3.
    Benbrahim-Tallaa L, Waterland RA, Styblo M, Achanzar WE, Webber MM, Waalkes MP (2005) Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206:288-298PubMedCrossRefGoogle Scholar
  4. 4.
    Bhave MR, Wilson MJ, Waalkes MP (1988) Methylation status and organization of the metallothionein-I gene in livers and testes of strains of mice resistant and susceptible to cadmium. Toxicology 50:231-245PubMedCrossRefGoogle Scholar
  5. 5.
    Tuck-Muller CM, Narayan A, Tsien F, Smeets DF, Sawyer J, Fiala ES et al (2000) DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89:121-128PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalgo ML, Liang G, Spruck CH III, Zingg JM, Rideout WM III, Jones PA (1997) Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res 57:594-599PubMedGoogle Scholar
  7. 7.
    Greger V, Debus N, Lohmann D, Hopping W, Passarge E, Horsthemke B (1994) Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet 94:491-496PubMedCrossRefGoogle Scholar
  8. 8.
    Magewu AN, Jones PA (1994) Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Mol Cell Biol 14:4225-4232PubMedGoogle Scholar
  9. 9.
    Matsuda Y, Ichida T, Matsuzawa J, Sugimura K, Asakura H (1999) p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. Gastroenterology 116:394-400PubMedCrossRefGoogle Scholar
  10. 10.
    Shi H, Maier S, Nimmrich I, Yan PS, Caldwell CW, Olek A et al (2003) Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. J Cell Biochem 88:138-143PubMedCrossRefGoogle Scholar
  11. 11.
    Bibikova M, Chudin E, Wu B, Zhou L, Garcia EW, Liu Y, Shin S et al (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res 16:1075-1083PubMedCrossRefGoogle Scholar
  12. 12.
    Kawamata N, Inagaki N, Mizumura S, Sugimoto KJ, Sakajiri S, Ohyanagi-Hara M et al (2005) Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol 74:424-429PubMedCrossRefGoogle Scholar
  13. 13.
    Heard E, Clerc P, Avner P (1997) X-chromo­some inactivation in mammals. Annu Rev Genet 31:571-610PubMedCrossRefGoogle Scholar
  14. 14.
    Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042-2054PubMedCrossRefGoogle Scholar
  15. 15.
    Kay PH, Spagnolo DV, Taylor J, Ziman M (1997) DNA methylation and developmental genes in lymphomagenesis-more questions than answers? Leuk Lymphoma 24:211-220PubMedGoogle Scholar
  16. 16.
    Klangby U, Okan I, Magnusson KP, Wendland M, Lind P, Wiman KG (1998) p16/INK4a and p15/INK4b gene methylation and absence of p16/INK4a mRNA and protein expression in Burkitt’s lymphoma. Blood 91:1680-1687PubMedGoogle Scholar
  17. 17.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89-97PubMedCrossRefGoogle Scholar
  18. 18.
    Klose RJ, Sarraf SA, Schmiedeberg L, McDermott SM, Stancheva I, Bird AP (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell 19:667-678PubMedCrossRefGoogle Scholar
  19. 19.
    Esteve PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR et al (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089-3103PubMedCrossRefGoogle Scholar
  20. 20.
    Fung MK, Au WY, Liang R, Srivastava G, Kwong YL (2003) Aberrant promoter methylation in gastric lymphoma. Haematologica 88:231-232PubMedGoogle Scholar
  21. 21.
    Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. Apmis 115:1039-1059PubMedCrossRefGoogle Scholar
  22. 22.
    Henrickson SE, Hartmann EM, Ott G, Rosenwald A (2007) Gene expression profiling in malignant lymphomas. Adv Exp Med Biol 593:134-146PubMedCrossRefGoogle Scholar
  23. 23.
    Issa JP (2000) The epigenetics of colorectal cancer. Ann N Y Acad Sci 910:140-153, discussion 153-5PubMedCrossRefGoogle Scholar
  24. 24.
    Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988-993PubMedCrossRefGoogle Scholar
  25. 25.
    Khulan B, Thompson R, Ye K, Fazzari MJ, Suzuki M, Stasiek E, Figueroa ME et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046-1055PubMedCrossRefGoogle Scholar
  26. 26.
    Figueroa ME, Reimers M, Thompson RF, Ye K, Li Y, Selzer RR et al (2008) An integrative genomic and epigenomic approach for the study of transcriptional regulation. PLoS One 3:e1882PubMedCrossRefGoogle Scholar
  27. 27.
    Figueroa ME, Wouters BJ, Skrabanek L, Glass J, Li Y, Erpelinck-Verschueren CA, Langerak M et al (2009) Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood 113:2795-2804PubMedCrossRefGoogle Scholar
  28. 28.
    Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446-455PubMedCrossRefGoogle Scholar
  29. 29.
    Glass JL, Thompson RF, Khulan B, Figueroa ME, Olivier EN, Oakley EJ et al (2007) CG dinucleotide clustering is a species-specific property of the genome. Nucleic Acids Res 35:6798-6807PubMedCrossRefGoogle Scholar
  30. 30.
    Oda M, Greally JM (2009) The HELP assay. Methods Mol Biol 507:77-87PubMedCrossRefGoogle Scholar
  31. 31.
    Thompson RF, Reimers M, Khulan B, Gissot M, Richmond TA, Chen Q et al (2008) An analytical pipeline for genomic representations used for cytosine methylation studies. Bioinformatics 24:1161-1167PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rita Shaknovich
    • 1
  • Maria E. Figueroa
    • 2
  • Ari Melnick
    • 2
  1. 1.Division of Immunopathology, Department of PathologyWeill Medical College, Cornell UniversityNew YorkUSA
  2. 2.Division of Hematology/Oncology, Department of MedicineWeill Medical College, Cornell UniversityNew YorkUSA

Personalised recommendations