Skip to main content

Immunotherapy of Cancer with Dendritic Cells Loaded with Tumor Antigens and Activated Through mRNA Electroporation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

Abstract

Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Villadangos, J.A. and Schnorrer, P. (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol, 7, 543–555.

    Article  PubMed  CAS  Google Scholar 

  2. Melief, C.J. (2008) Cancer immunotherapy by dendritic cells. Immunity, 29, 372–383.

    Article  PubMed  CAS  Google Scholar 

  3. Reis e Sousa, C. (2006) Dendritic cells in a mature age. Nat Rev Immunol, 6, 476–483.

    Article  PubMed  CAS  Google Scholar 

  4. Prlic, M., Williams, M.A., and Bevan, M.J. (2007) Requirements for CD8 T-cell priming, memory generation and maintenance. Curr Opin Immunol, 19, 315–319.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, C.M., Wilson, N.S., Waithman, J., Villadangos, J.A., Carbone, F.R., Heath, W.R., and Belz, G.T. (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol, 5, 1143–1148.

    PubMed  Google Scholar 

  6. Caruso, D.A., Orme, L.M., Neale, A.M., Radcliff, F.J., Amor, G.M., Maixner, W., Downie, P., Hassall, T.E., Tang, M.L., and Ashley, D.M. (2004) Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol, 6, 236–246.

    Article  PubMed  CAS  Google Scholar 

  7. Caruso, D.A., Orme, L.M., Amor, G.M., Neale, A.M., Radcliff, F.J., Downie, P., Tang, M.L., and Ashley, D.M. (2005) Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer, 103, 1280–1291.

    Article  PubMed  CAS  Google Scholar 

  8. Erdmann, M., Dorrie, J., Schaft, N., Strasser, E., Hendelmeier, M., Kampgen, E., Schuler, G., and Schuler-Thurner, B. (2007) Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection. J Immunother, 30, 663–674.

    Article  PubMed  CAS  Google Scholar 

  9. Tuyaerts, S., Noppe, S.M., Corthals, J., Breckpot, K., Heirman, C., De Greef, C., Van Riet, I., and Thielemans, K. (2002) Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods, 264, 135–151.

    Article  PubMed  Google Scholar 

  10. Schreurs, M.W., Eggert, A.A., de Boer, A.J., Vissers, J.L., van Hall, T., Offringa, R., Figdor, C.G., and Adema, G.J. (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res, 60, 6995–7001.

    PubMed  Google Scholar 

  11. Gilboa, E. (2007) DC-based cancer vaccines. J Clin Invest, 117, 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  12. http://www.clinicaltrials.gov/ct2/search

  13. Schadendorf, D., Ugurel, S., Schuler-Thurner, B., Nestle, F.O., Enk, A., Brocker, E.B., Grabbe, S., Rittgen, W., Edler, L., Sucker, A., Zimpfer-Rechner, C., Berger, T., Kamarashev, J., Burg, G., Jonuleit, H., Tuttenberg, A., Becker, J.C., Keikavoussi, P., Kampgen, E., and Schuler, G. (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol, 17, 563–570.

    PubMed  Google Scholar 

  14. Engell-Noerregaard, L., Hansen, T.H., Andersen, M.H., Thor Straten, P., and Svane, I.M. (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother, 58, 1–14.

    Article  PubMed  CAS  Google Scholar 

  15. Lesterhuis, W.J., Aarntzen, E.H., De Vries, I.J., Schuurhuis, D.H., Figdor, C.G., Adema, G.J., and Punt, C.J. (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol, 66, 118–134.

    Article  PubMed  Google Scholar 

  16. Tyagi, R.K., Mangal, S., Garg, N., and Sharma, P.K. (2009) RNA-based immunotherapy of cancer: role and therapeutic implications of dendritic cells. Expert Rev Anticancer Ther, 9, 97–114.

    Article  PubMed  CAS  Google Scholar 

  17. Tuyaerts, S., Aerts, J.L., Corthals, J., Neyns, B., Heirman, C., Breckpot, K., Thielemans, K., and Bonehill, A. (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother, 56, 1513–1537.

    Article  PubMed  CAS  Google Scholar 

  18. Rains, N., Cannan, R.J., Chen, W., and Stubbs, R.S. (2001) Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology, 48, 347–351.

    PubMed  Google Scholar 

  19. Mu, L.J., Gaudernack, G., Saeboe-Larssen, S., Hammerstad, H., Tierens, A., and Kvalheim, G. (2003) A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scand J Immunol, 58, 578–586.

    Article  PubMed  Google Scholar 

  20. Kyte, J.A., Mu, L., Aamdal, S., Kvalheim, G., Dueland, S., Hauser, M., Gullestad, H.P., Ryder, T., Lislerud, K., Hammerstad, H., and Gaudernack, G. (2006) Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther, 13, 905–918.

    Article  PubMed  CAS  Google Scholar 

  21. Markovic, S.N., Dietz, A.B., Greiner, C.W., Maas, M.L., Butler, G.W., Padley, D.J., Bulur, P.A., Allred, J.B., Creagan, E.T., Ingle, J.N., Gastineau, D.A., and Vuk-Pavlovic, S. (2006) Preparing clinical-grade myeloid dendritic cells by electroporation-mediated transfection of in vitro amplified tumor-derived mRNA and safety testing in stage IV malignant melanoma. J Transl Med, 4, 35.

    Article  PubMed  CAS  Google Scholar 

  22. Mu, L.J., Kyte, J.A., Kvalheim, G., Aamdal, S., Dueland, S., Hauser, M., Hammerstad, H., Waehre, H., Raabe, N., and Gaudernack, G. (2005) Immunotherapy with allotumour mRNA-transfected dendritic cells in androgen-resistant prostate cancer patients. Br J Cancer, 93, 749–756.

    Article  PubMed  CAS  Google Scholar 

  23. Morse, M.A., Nair, S.K., Mosca, P.J., Hobeika, A.C., Clay, T.M., Deng, Y., Boczkowski, D., Proia, A., Neidzwiecki, D., Clavien, P.A., Hurwitz, H.I., Schlom, J., Gilboa, E., and Lyerly, H.K. (2003) Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest, 21, 341–349.

    Article  PubMed  CAS  Google Scholar 

  24. Peng, J.C., Thomas, R., and Nielsen, L.K. (2005) Generation and maturation of dendritic cells for clinical application under serum-free conditions. J Immunother, 28, 599–609.

    Article  PubMed  Google Scholar 

  25. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E., and Vieweg, J. (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest, 109, 409–417.

    PubMed  Google Scholar 

  26. Su, Z., Dannull, J., Yang, B.K., Dahm, P., Coleman, D., Yancey, D., Sichi, S., Niedzwiecki, D., Boczkowski, D., Gilboa, E., and Vieweg, J. (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol, 174, 3798–3807.

    PubMed  Google Scholar 

  27. Su, Z., Dannull, J., Heiser, A., Yancey, D., Pruitt, S., Madden, J., Coleman, D., Niedzwiecki, D., Gilboa, E., and Vieweg, J. (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res, 63, 2127–2133.

    PubMed  Google Scholar 

  28. Dannull, J., Su, Z., Rizzieri, D., Yang, B.K., Coleman, D., Yancey, D., Zhang, A., Dahm, P., Chao, N., Gilboa, E., and Vieweg, J. (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest, 115, 3623–3633.

    Article  PubMed  CAS  Google Scholar 

  29. Nair, S.K., Morse, M., Boczkowski, D., Cumming, R.I., Vasovic, L., Gilboa, E., and Lyerly, H.K. (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg, 235, 540–549.

    Article  PubMed  Google Scholar 

  30. Kyte, J.A., Kvalheim, G., Lislerud, K., thor Straten, P., Dueland, S., Aamdal, S., and Gaudernack, G. (2007) T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother, 56, 659–675.

    Article  PubMed  CAS  Google Scholar 

  31. Figdor, C.G., de Vries, I.J., Lesterhuis, W.J., and Melief, C.J. (2004) Dendritic cell immunotherapy: mapping the way. Nat Med, 10, 475–480.

    Article  PubMed  CAS  Google Scholar 

  32. Nicolette, C.A., Healey, D., Tcherepanova, I., Whelton, P., Monesmith, T., Coombs, L., Finke, L.H., Whiteside, T., and Miesowicz, F. (2007) Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine, 25(Suppl 2), B47–B60.

    Article  PubMed  CAS  Google Scholar 

  33. Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Zhang, Y., van der Bruggen, P., and Thielemans, K. (2003) Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res, 63, 5587–5594.

    PubMed  Google Scholar 

  34. Heiser, A., Maurice, M.A., Yancey, D.R., Coleman, D.M., Dahm, P., and Vieweg, J. (2001) Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res, 61, 3388–3393.

    PubMed  Google Scholar 

  35. Bonehill, A., Heirman, C., Tuyaerts, S., Michiels, A., Breckpot, K., Brasseur, F., Zhang, Y., Van Der Bruggen, P., and Thielemans, K. (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol, 172, 6649–6657.

    PubMed  Google Scholar 

  36. Pascolo, S. (2004) Messenger RNA-based vaccines. Expert Opin Biol Ther, 4, 1285–1294.

    Article  PubMed  Google Scholar 

  37. Ponsaerts, P., Van Tendeloo, V.F., and Berneman, Z.N. (2003) Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol, 134, 378–384.

    Article  PubMed  CAS  Google Scholar 

  38. Breckpot, K., Heirman, C., Neyns, B., and Thielemans, K. (2004) Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med, 6, 1175–1188.

    Article  PubMed  CAS  Google Scholar 

  39. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., Knuth, A., and Boon, T. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254, 1643–1647.

    PubMed  Google Scholar 

  40. Lucas, S. and Coulie, P.G. (2008) About human tumor antigens to be used in immunotherapy. Semin Immunol, 20, 301–307.

    Article  PubMed  CAS  Google Scholar 

  41. Neller, M.A., Lopez, J.A., and Schmidt, C.W. (2008) Antigens for cancer immunotherapy. Semin Immunol, 20, 286–295.

    Article  PubMed  CAS  Google Scholar 

  42. Van Driessche, A., Gao, L., Stauss, H.J., Ponsaerts, P., Van Bockstaele, D.R., Berneman, Z.N., and Van Tendeloo, V.F. (2005) Antigen-specific cellular immunotherapy of leukemia. Leukemia, 19, 1863–1871.

    PubMed  Google Scholar 

  43. Connerotte, T., Van Pel, A., Godelaine, D., Tartour, E., Schuler-Thurner, B., Lucas, S., Thielemans, K., Schuler, G., and Coulie, P.G. (2008) Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res, 68, 3931–3940.

    Article  PubMed  CAS  Google Scholar 

  44. Heiser, A., Dahm, P., Yancey, D.R., Maurice, M.A., Boczkowski, D., Nair, S.K., Gilboa, E., and Vieweg, J. (2000) Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol, 164, 5508–5514.

    PubMed  Google Scholar 

  45. Parmiani, G., De Filippo, A., Novellino, L., and Castelli, C. (2007) Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol, 178, 1975–1979.

    PubMed  Google Scholar 

  46. Zitvogel, L., Tesniere, A., and Kroemer, G. (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol, 6, 715–727.

    Article  PubMed  CAS  Google Scholar 

  47. Campoli, M., Chang, C.C., and Ferrone, S. (2002) HLA class I antigen loss, tumor immune escape and immune selection. Vaccine, 20(Suppl 4), A40–A45.

    Article  PubMed  CAS  Google Scholar 

  48. Muller, M.R., Grunebach, F., Nencioni, A., and Brossart, P. (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol, 170, 5892–5896.

    PubMed  Google Scholar 

  49. Holtkamp, S., Kreiter, S., Selmi, A., Simon, P., Koslowski, M., Huber, C., Tureci, O., and Sahin, U. (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 108, 4009–4017.

    Article  PubMed  CAS  Google Scholar 

  50. Hart, D.P., Xue, S.A., Thomas, S., Cesco-Gaspere, M., Tranter, A., Willcox, B., Lee, S.P., Steven, N., Morris, E.C., and Stauss, H.J. (2008) Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells. Gene Ther, 15, 625–631.

    Article  PubMed  CAS  Google Scholar 

  51. Mockey, M., Goncalves, C., Dupuy, F.P., Lemoine, F.M., Pichon, C., and Midoux, P. (2006) mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun, 340, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  52. Bontkes, H.J., Kramer, D., Ruizendaal, J.J., Kueter, E.W., van Tendeloo, V.F., Meijer, C.J., and Hooijberg, E. (2007) Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther, 14, 366–375.

    Article  PubMed  CAS  Google Scholar 

  53. Kreiter, S., Selmi, A., Diken, M., Sebastian, M., Osterloh, P., Schild, H., Huber, C., Tureci, O., and Sahin, U. (2008) Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. J Immunol, 180, 309–318.

    PubMed  Google Scholar 

  54. Sjoblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Mandelker, D., Leary, R.J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S.D., Willis, J., Dawson, D., Willson, J.K., Gazdar, A.F., Hartigan, J., Wu, L., Liu, C., Parmigiani, G., Park, B.H., Bachman, K.E., Papadopoulos, N., Vogelstein, B., Kinzler, K.W., and Velculescu, V.E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.

    Article  PubMed  CAS  Google Scholar 

  55. Dunn, G.P., Old, L.J., and Schreiber, R.D. (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21, 137–148.

    Article  PubMed  Google Scholar 

  56. Heiser, A., Maurice, M.A., Yancey, D.R., Wu, N.Z., Dahm, P., Pruitt, S.K., Boczkowski, D., Nair, S.K., Ballo, M.S., Gilboa, E., and Vieweg, J. (2001) Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol, 166, 2953–2960.

    PubMed  Google Scholar 

  57. Parkhurst, M.R., DePan, C., Riley, J.P., Rosenberg, S.A., and Shu, S. (2003) Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules. J Immunol, 170, 5317–5325.

    PubMed  Google Scholar 

  58. Nestle, F.O., Banchereau, J., and Hart, D. (2001) Dendritic cells: On the move from bench to bedside. Nat Med, 7, 761–765.

    Article  PubMed  CAS  Google Scholar 

  59. Ludewig, B., McCoy, K., Pericin, M., Ochsenbein, A.F., Dumrese, T., Odermatt, B., Toes, R.E., Melief, C.J., Hengartner, H., and Zinkernagel, R.M. (2001) Rapid peptide turnover and inefficient presentation of exogenous antigen critically limit the activation of self-reactive CTL by dendritic cells. J Immunol, 166, 3678–3687.

    PubMed  Google Scholar 

  60. Iezzi, G., Scotet, E., Scheidegger, D., and Lanzavecchia, A. (1999) The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur J Immunol, 29, 4092–4101.

    Article  PubMed  Google Scholar 

  61. Kyte, J.A. and Gaudernack, G. (2006) Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother, 55, 1432–1442.

    Article  PubMed  CAS  Google Scholar 

  62. Boczkowski, D., Nair, S.K., Nam, J.H., Lyerly, H.K., and Gilboa, E. (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res, 60, 1028–1034.

    PubMed  Google Scholar 

  63. Grunebach, F., Muller, M.R., Nencioni, A., and Brossart, P. (2003) Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther, 10, 367–374.

    Article  PubMed  CAS  Google Scholar 

  64. Nencioni, A., Muller, M.R., Grunebach, F., Garuti, A., Mingari, M.C., Patrone, F., Ballestrero, A., and Brossart, P. (2003) Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther, 10, 209–214.

    Article  PubMed  CAS  Google Scholar 

  65. Adema, G.J., de Vries, I.J., Punt, C.J., and Figdor, C.G. (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol, 17, 170–174.

    Article  PubMed  CAS  Google Scholar 

  66. Van Tendeloo, V.F., Ponsaerts, P., Lardon, F., Nijs, G., Lenjou, M., Van Broeckhoven, C., Van Bockstaele, D.R., and Berneman, Z.N. (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood, 98, 49–56.

    PubMed  Google Scholar 

  67. Kalady, M.F., Onaitis, M.W., Padilla, K.M., Emani, S., Tyler, D.S., and Pruitt, S.K. (2002) Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. J Surg Res, 105, 17–24.

    Article  PubMed  CAS  Google Scholar 

  68. Tuyaerts, S., Michiels, A., Corthals, J., Bonehill, A., Heirman, C., de Greef, C., Noppe, S.M., and Thielemans, K. (2003) Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther, 10, 696–706.

    Article  PubMed  CAS  Google Scholar 

  69. Saeboe-Larssen, S., Fossberg, E., and Gaudernack, G. (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods, 259, 191–203.

    Article  PubMed  Google Scholar 

  70. Schaft, N., Dorrie, J., Thumann, P., Beck, V.E., Muller, I., Schultz, E.S., Kampgen, E., Dieckmann, D., and Schuler, G. (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol, 174, 3087–3097.

    PubMed  Google Scholar 

  71. Ponsaerts, P., Van Tendeloo, V.F., Cools, N., Van Driessche, A., Lardon, F., Nijs, G., Lenjou, M., Mertens, G., Van Broeckhoven, C., Van Bockstaele, D.R., and Berneman, Z.N. (2002) mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia, 16, 1324–1330.

    Article  PubMed  CAS  Google Scholar 

  72. Dullaers, M., Breckpot, K., Van Meirvenne, S., Bonehill, A., Tuyaerts, S., Michiels, A., Straetman, L., Heirman, C., De Greef, C., Van Der Bruggen, P., and Thielemans, K. (2004) Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther, 10, 768–779.

    Article  PubMed  CAS  Google Scholar 

  73. Bontkes, H.J., Kramer, D., Ruizendaal, J.J., Meijer, C.J., and Hooijberg, E. (2008) Tumor associated antigen and interleukin-12 mRNA transfected dendritic cells enhance effector function of natural killer cells and antigen specific T-cells. Clin Immunol, 127, 375–384.

    Article  PubMed  CAS  Google Scholar 

  74. Minkis, K., Kavanagh, D.G., Alter, G., Bogunovic, D., O’Neill, D., Adams, S., Pavlick, A., Walker, B.D., Brockman, M.A., Gandhi, R.T., and Bhardwaj, N. (2008) Type 2 Bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res, 68, 9441–9450.

    Article  PubMed  CAS  Google Scholar 

  75. Dorrie, J., Schaft, N., Muller, I., Wellner, V., Schunder, T., Hanig, J., Oostingh, G.J., Schon, M.P., Robert, C., Kampgen, E., and Schuler, G. (2008) Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol Immunother, 57, 467–477.

    Article  PubMed  CAS  Google Scholar 

  76. Tuyaerts, S., Van Meirvenne, S., Bonehill, A., Heirman, C., Corthals, J., Waldmann, H., Breckpot, K., Thielemans, K., and Aerts, J.L. (2007) Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. J Leukoc Biol, 82, 93–105.

    Article  PubMed  CAS  Google Scholar 

  77. Aerts-Toegaert, C., Heirman, C., Tuyaerts, S., Corthals, J., Aerts, J.L., Bonehill, A., Thielemans, K., and Breckpot, K. (2007) CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol, 37, 686–695.

    Article  PubMed  CAS  Google Scholar 

  78. Bonehill, A., Tuyaerts, S., Van Nuffel, A.M., Heirman, C., Bos, T.J., Fostier, K., Neyns, B., and Thielemans, K. (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther, 16, 1170–1180.

    Article  PubMed  CAS  Google Scholar 

  79. Michiels, A., Breckpot, K., Corthals, J., Tuyaerts, S., Bonehill, A., Heirman, C., Thielemans, K., and Aerts, J.L. (2006) Induction of antigen-specific CD8+ cytotoxic T cells by dendritic cells co-electroporated with a dsRNA analogue and tumor antigen mRNA. Gene Ther, 13, 1027–1036.

    Article  PubMed  CAS  Google Scholar 

  80. Breckpot, K., Aerts-Toegaert, C., Heirman, C., Peeters, U., Beyaert, R., Aerts, J.L., and Thielemans, K. (2009) Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine. J Immunol, 182, 860–870.

    PubMed  Google Scholar 

  81. http://www.clinicaltrials.gov/ct2/show/NCT00672542?term=melanoma+AND+dendritic+cells+AND+siRNA&rank=1

  82. Ponsaerts, P., Van den Bosch, G., Cools, N., Van Driessche, A., Nijs, G., Lenjou, M., Lardon, F., Van Broeckhoven, C., Van Bockstaele, D.R., Berneman, Z.N., and Van Tendeloo, V.F. (2002) Messenger RNA electroporation of human monocytes, followed by rapid in vitro differentiation, leads to highly stimulatory antigen-loaded mature dendritic cells. J Immunol, 169, 1669–1675.

    PubMed  Google Scholar 

  83. Milano, F., van Baal, J.W., Rygiel, A.M., Bergman, J.J., Van Deventer, S.J., Kapsenberg, M.L., Peppelenbosch, M.P., and Krishnadath, K.K. (2007) An improved protocol for generation of immuno-potent dendritic cells through direct electroporation of CD14+ monocytes. J Immunol Methods, 321, 94–106.

    Article  PubMed  CAS  Google Scholar 

  84. Met, O., Eriksen, J., and Svane, I.M. (2008) Studies on mRNA electroporation of immature and mature dendritic cells: effects on their immunogenic potential. Mol Biotechnol, 40, 151–160.

    Article  PubMed  CAS  Google Scholar 

  85. Jonuleit, H., Giesecke-Tuettenberg, A., Tuting, T., Thurner-Schuler, B., Stuge, T.B., Paragnik, L., Kandemir, A., Lee, P.P., Schuler, G., Knop, J., and Enk, A.H. (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer, 93, 243–251.

    Article  PubMed  Google Scholar 

  86. de Vries, I.J., Lesterhuis, W.J., Scharenborg, N.M., Engelen, L.P., Ruiter, D.J., Gerritsen, M.J., Croockewit, S., Britten, C.M., Torensma, R., Adema, G.J., Figdor, C.G., and Punt, C.J. (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res, 9, 5091–5100.

    PubMed  Google Scholar 

  87. Steinman, R.M. and Nussenzweig, M.C. (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A, 99, 351–358.

    Article  PubMed  CAS  Google Scholar 

  88. Lutz, M.B. and Schuler, G. (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol, 23, 445–449.

    Article  PubMed  Google Scholar 

  89. Cools, N., Van Tendeloo, V.F., Smits, E.L., Lenjou, M., Nijs, G., Van Bockstaele, D.R., Berneman, Z.N., and Ponsaerts, P. (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med, 12, 690–700.

    Article  PubMed  CAS  Google Scholar 

  90. Enk, A.H. (2005) Dendritic cells in tolerance induction. Immunol Lett, 99, 8–11.

    Article  PubMed  CAS  Google Scholar 

  91. Jonuleit, H., Kuhn, U., Muller, G., Steinbrink, K., Paragnik, L., Schmitt, E., Knop, J., and Enk, A.H. (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol, 27, 3135–3142.

    Article  PubMed  Google Scholar 

  92. Scandella, E., Men, Y., Gillessen, S., Forster, R., and Groettrup, M. (2002) Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 100, 1354–1361.

    Article  PubMed  CAS  Google Scholar 

  93. Boullart, A.C., Aarntzen, E.H., Verdijk, P., Jacobs, J.F., Schuurhuis, D.H., Benitez-Ribas, D., Schreibelt, G., van de Rakt, M.W., Scharenborg, N.M., de Boer, A., Kramer, M., Figdor, C.G., Punt, C.J., Adema, G.J., and de Vries, I.J. (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother, 57, 1589–1597.

    Article  PubMed  CAS  Google Scholar 

  94. van der Pouw Kraan, T.C., Boeije, L.C., Smeenk, R.J., Wijdenes, J., and Aarden, L.A. (1995) Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med, 181, 775–779.

    PubMed  Google Scholar 

  95. Kalinski, P., Vieira, P.L., Schuitemaker, J.H., de Jong, E.C., and Kapsenberg, M.L. (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood, 97, 3466–3469.

    Article  PubMed  Google Scholar 

  96. Banerjee, D.K., Dhodapkar, M.V., Matayeva, E., Steinman, R.M., and Dhodapkar, K.M. (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood, 108, 2655–2661.

    Article  PubMed  CAS  Google Scholar 

  97. Mailliard, R.B., Wankowicz-Kalinska, A., Cai, Q., Wesa, A., Hilkens, C.M., Kapsenberg, M.L., Kirkwood, J.M., Storkus, W.J., and Kalinski, P. (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res, 64, 5934–5937.

    Article  PubMed  Google Scholar 

  98. Jasani, B., Navabi, H., and Adams, M. (2009) Ampligen: a potential toll-like 3 receptor adjuvant for immunotherapy of cancer. Vaccine, 27(25–26), 3401–3404.

    PubMed  Google Scholar 

  99. Schuurhuis, D.H., Lesterhuis, W.J., Kramer, M., Looman, M.G., van Hout-Kuijer, M., Schreibelt, G., Boullart, A.C., Aarntzen, E.H., Benitez-Ribas, D., Figdor, C.G., Punt, C.J., de Vries, I.J., and Adema, G.J. (2008) Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunol Immunother, 58(7), 1109–1115.

    PubMed  Google Scholar 

  100. Cisco, R.M., Abdel-Wahab, Z., Dannull, J., Nair, S., Tyler, D.S., Gilboa, E., Vieweg, J., Daaka, Y., and Pruitt, S.K. (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol, 172, 7162–7168.

    PubMed  Google Scholar 

  101. Zobywalski, A., Javorovic, M., Frankenberger, B., Pohla, H., Kremmer, E., Bigalke, I., and Schendel, D.J. (2007) Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70. J Transl Med, 5, 18.

    Article  PubMed  CAS  Google Scholar 

  102. Michiels, A., Tuyaerts, S., Bonehill, A., Corthals, J., Breckpot, K., Heirman, C., Van Meirvenne, S., Dullaers, M., Allard, S., Brasseur, F., van der Bruggen, P., and Thielemans, K. (2005) Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines. Gene Ther, 12, 772–782.

    Article  PubMed  CAS  Google Scholar 

  103. Langenkamp, A., Messi, M., Lanzavecchia, A., and Sallusto, F. (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol, 1, 311–316.

    Article  PubMed  CAS  Google Scholar 

  104. Camporeale, A., Boni, A., Iezzi, G., Degl’Innocenti, E., Grioni, M., Mondino, A.,, and Bellone, M. (2003) Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Res, 63, 3688–3694.

    PubMed  Google Scholar 

  105. Vonderheide, R.H., Flaherty, K.T., Khalil, M., Stumacher, M.S., Bajor, D.L., Hutnick, N.A., Sullivan, P., Mahany, J.J., Gallagher, M., Kramer, A., Green, S.J., O‘Dwyer, P.J., Running, K.L., Huhn, R.D., and Antonia, S.J. (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol, 25, 876–883.

    Article  PubMed  CAS  Google Scholar 

  106. Turner, J.G., Rakhmilevich, A.L., Burdelya, L., Neal, Z., Imboden, M., Sondel, P.M., and Yu, H. (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol, 166, 89–94.

    PubMed  Google Scholar 

  107. Nair, S., McLaughlin, C., Weizer, A., Su, Z., Boczkowski, D., Dannull, J., Vieweg, J., and Gilboa, E. (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol, 171, 6275–6282.

    PubMed  Google Scholar 

  108. Perfetto, S.P., Chattopadhyay, P.K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R.A., and Roederer, M. (2006) Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J Immunol Methods, 313, 199–208.

    Article  PubMed  CAS  Google Scholar 

  109. Yewdell, J.W. and Nicchitta, C.V. (2006) The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol, 27, 368–373.

    Article  PubMed  CAS  Google Scholar 

  110. Ricicova, M. and Palkova, Z. (2003) Comparative analyses of Saccharomyces cerevisiae RNAs using Agilent RNA 6000 Nano Assay and agarose gel electrophoresis. FEMS Yeast Res, 4, 119–122.

    PubMed  Google Scholar 

  111. Morse, M.A., Coleman, R.E., Akabani, G., Niehaus, N., Coleman, D., and Lyerly, H.K. (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res, 59, 56–58.

    PubMed  Google Scholar 

  112. Ridolfi, R., Riccobon, A., Galassi, R., Giorgetti, G., Petrini, M., Fiammenghi, L., Stefanelli, M., Ridolfi, L., Moretti, A., Migliori, G., and Fiorentini, G. (2004) Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med, 2, 27.

    Article  PubMed  CAS  Google Scholar 

  113. De Vries, I.J., Krooshoop, D.J., Scharenborg, N.M., Lesterhuis, W.J., Diepstra, J.H., Van Muijen, G.N., Strijk, S.P., Ruers, T.J., Boerman, O.C., Oyen, W.J., Adema, G.J., Punt, C.J., and Figdor, C.G. (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res, 63, 12–17.

    PubMed  Google Scholar 

  114. de Vries, I.J., Lesterhuis, W.J., Barentsz, J.O., Verdijk, P., van Krieken, J.H., Boerman, O.C., Oyen, W.J., Bonenkamp, J.J., Boezeman, J.B., Adema, G.J., Bulte, J.W., Scheenen, T.W., Punt, C.J., Heerschap, A., and Figdor, C.G. (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol, 23, 1407–1413.

    PubMed  Google Scholar 

  115. Schaft, N., Birkholz, K., Hofmann, C., Schmid, M., Theiner, G., and Dorrie, J. (2008) Dendritic cell vaccination and other strategies to tip the balance of the immune system: DC2007 5th International Meeting, July 1618, Bamberg, Germany. Cancer Immunol Immunother, 57, 913–928.

    PubMed  Google Scholar 

  116. Verdijk, P., Scheenen, T.W., Lesterhuis, W.J., Gambarota, G., Veltien, A.A., Walczak, P., Scharenborg, N.M., Bulte, J.W., Punt, C.J., Heerschap, A., Figdor, C.G., and de Vries, I.J. (2007) Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer, 120, 978–984.

    PubMed  Google Scholar 

  117. Mullins, D.W., Sheasley, S.L., Ream, R.M., Bullock, T.N., Fu, Y.X., and Engelhard, V.H. (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med, 198, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  118. Fong, L., Brockstedt, D., Benike, C., Wu, L., and Engleman, E.G. (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol, 166, 4254–4259.

    PubMed  Google Scholar 

  119. Carrasco, J., Van Pel, A., Neyns, B., Lethe, B., Brasseur, F., Renkvist, N., van der Bruggen, P., van Baren, N., Paulus, R., Thielemans, K., Boon, T., and Godelaine, D. (2008) Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J Immunol, 180, 3585–3593.

    PubMed  Google Scholar 

  120. Bonehill, A., Van Nuffel, A.M.T., Corthals, J., Tuyaerts, S., Heirman, C., Françios, V., Colau, D., Van Der Bruggen, P., Neyns, B., and Thielemans, K. (2009) Single step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res, 15, 3366–3375.

    Article  PubMed  CAS  Google Scholar 

  121. Kikuchi, T., Moore, M.A., and Crystal, R.G. (2000) Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood, 96, 91–99.

    PubMed  Google Scholar 

  122. Lapointe, R., Toso, J.F., Butts, C., Young, H.A., and Hwu, P. (2000) Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol, 30, 3291–3298.

    Article  PubMed  Google Scholar 

  123. Borst, J., Hendriks, J., and Xiao, Y. (2005) CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol, 17, 275–281.

    Article  PubMed  CAS  Google Scholar 

  124. Van Driessche, A., Ponsaerts, P., Van Bockstaele, D.R., Van Tendeloo, V.F., and Berneman, Z.N. (2005) Messenger RNA electroporation: an efficient tool in immunotherapy and stem cell research. Folia Histochem Cytobiol, 43, 213–216.

    PubMed  Google Scholar 

  125. Wolfl, M., Kuball, J., Ho, W.Y., Nguyen, H., Manley, T.J., Bleakley, M., and Greenberg, P.D. (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood, 110, 201–210.

    Article  PubMed  CAS  Google Scholar 

  126. Betts, M.R., Brenchley, J.M., Price, D.A., De Rosa, S.C., Douek, D.C., Roederer, M., and Koup, R.A. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods, 281, 65–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Van Nuffel, A.M., Corthals, J., Neyns, B., Heirman, C., Thielemans, K., Bonehill, A. (2010). Immunotherapy of Cancer with Dendritic Cells Loaded with Tumor Antigens and Activated Through mRNA Electroporation. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics