Skip to main content

Intron-Mediated RNA Interference, Intronic MicroRNAs, and Applications

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

Abstract

Nearly 97% of the human genome is non-coding DNA. The intron occupies most of it around the gene-coding regions. Numerous intronic sequences have been recently found to encode microRNAs (miRNAs), responsible for RNA-mediated gene silencing through RNA interference (RNAi)-like pathways. miRNAs, small single-stranded regulatory RNAs capable of interfering with intracellular messenger RNAs (mRNAs) that contain either complete or partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. This flexible characteristic differs from double-stranded siRNAs (small interfering RNAs) because more rigid complementarity is required for siRNA-induced RNAi gene silencing. miRNAs were firstly discovered in Caenorhabditis elegans as native RNA fragments that modulate a wide range of genetic regulatory pathways during embryonic development. Currently, varieties of miRNAs are widely reported in plants, animals, and even microorganisms. Intronic miRNA is a new class of miRNAs derived from the processing of gene introns. The intronic miRNAs differ from previously described intergenic miRNAs due to the requirement of type II RNA polymerases (Pol-II) and spliceosomal components for their biogenesis. Several kinds of intronic miRNAs have been identified in C. elegans, mouse, and human cells. However, neither function nor application has been reported. Here, we show that, for the first time, intron-derived miRNAs are able to induce RNA interference not only in human and mouse cell lines but also in zebrafish, chicken, and mouse, which demonstrates the evolutionary preservation of the intron-mediated gene silencing through miRNA functionality in cell and in vivo. Based on this novel mechanism, numerous biomedical applications have been developed, including cosmetic skin whitening, transgenic animal generation, anti-viral vaccination and therapy, and somatic cell reprogramming into induced pluripotent stem (iPS) cells. These findings suggest an important miRNA-mediated gene regulatory system, which fine-tunes a variety of cellular and developmental events through the mechanism of RNAi-like gene silencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T., and Jewell, D. (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol, 13, 807–818.

    Article  PubMed  Google Scholar 

  2. Lin, S.L., Chang, D., Wu, D.Y., and Ying, S.Y. (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun, 310, 754–760.

    Article  PubMed  Google Scholar 

  3. Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res, 14, 1902–1910.

    Article  PubMed  Google Scholar 

  4. Lin, S.L., Chuong, C.M., and Ying, S.Y. (2001) A novel mRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells. Biochem Biophys Res Commun, 281, 639–644.

    Article  PubMed  Google Scholar 

  5. Ying, S.Y. and Lin, S.L. (2004) Intron-derived microRNAs – fine tuning of gene functions. Gene, 342, 25–28.

    Article  PubMed  Google Scholar 

  6. Clement, J.Q., Qian, L., Kaplinsky, N., and Wilkinson, M.F. (1999) The stability and fate of a spliced intron from vertebrate cells. RNA, 5, 206–220.

    Article  PubMed  Google Scholar 

  7. Parrish, S., Fleenor, J., Xu, S., Mello, C., and Fire, A. (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell, 6, 1077–1087.

    Article  PubMed  Google Scholar 

  8. Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E., and Prydz, H. (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res, 30, 1757–1766.

    Article  PubMed  Google Scholar 

  9. Hutvagner, G. and Zamore, P.D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060.

    Article  PubMed  Google Scholar 

  10. Zeng, Y., Yi, R., and Cullen, B.R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 100, 9779–9784.

    Article  PubMed  Google Scholar 

  11. Hall, I.M., Shankaranarayana, G.D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S.I. (2002) Establishment and maintenance of a heterochromatin domain. Science, 297, 2232–2237.

    Article  PubMed  Google Scholar 

  12. Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002) Cleavage of scarecrow-like mRNA targets directed by a class of arabidopsis miRNA. Science, 297, 2053–2056.

    Article  PubMed  Google Scholar 

  13. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002) Prediction of plant microRNA targets. Cell, 110, 513–520.

    Article  PubMed  Google Scholar 

  14. Lee, R.C., Feibaum, R.L., and Ambros, V. (1993) The C. elegans heterochromic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  PubMed  Google Scholar 

  15. Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.

    PubMed  Google Scholar 

  16. Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.

    Article  PubMed  Google Scholar 

  17. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25–36.

    Article  PubMed  Google Scholar 

  18. Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 13, 790–795.

    Article  PubMed  Google Scholar 

  19. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003) New microRNAs from mouse and human. RNA, 9, 175–179.

    Article  PubMed  Google Scholar 

  20. Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., and Dreyfuss, G. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 16, 720–728.

    Article  PubMed  Google Scholar 

  21. Zeng, Y., Wagner, E.J., and Cullen, B.R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 9, 1327–1333.

    Article  PubMed  Google Scholar 

  22. Lin, S.L., Chuong, C.M., and Ying, S.Y. (2001) D-RNAi (messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections. Curr Cancer Drug Targets, 1, 241–247.

    Article  PubMed  Google Scholar 

  23. Lin, S.L. and Ying, S.Y. (2005) D-RNAi-based therapeutics. In: Los, M. and Gibson, S. (Eds.) Apoptotic Pathways as Targets for Novel Therapies in Cancer & Other Diseases. Kluwer Press, New York, pp. 275–296.

    Google Scholar 

  24. O’Donnell, K.A. and Boeke, J.D. (2007) Mighty Piwis defend the germline against genome intruders. Cell, 129, 37–44.

    PubMed  Google Scholar 

  25. Handa, V., Saha, T., and Usdin, K. (2003) The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res, 31, 6243–6248.

    PubMed  Google Scholar 

  26. Krol, J., Fiszer, A., Mykowska, A., Sobczak, K., de Mezer, M., and Krzyzosiak, W.J. (2007) Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell, 25, 575–586.

    Article  PubMed  Google Scholar 

  27. Lin, S.L., Chang, D.C., and Ying, S.Y. (2005) Asymmetry of intronic pre-microRNA structures in functional RISC assembly. Gene, 356, 32–38.

    Article  PubMed  Google Scholar 

  28. Danin-Kreiselman, M., Lee, C.Y., and Chanfreau, G. (2003) RNAse III-mediated degradation of unspliced pre-mRNA and lariat introns. Mol Cell, 11, 1279–1289.

    Article  PubMed  Google Scholar 

  29. Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011–3016.

    Article  PubMed  Google Scholar 

  30. Lin, S.L., Chang, S.J.E., and Ying, S.Y. (2006) First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol Psychiatry, 11, 616–617.

    Article  PubMed  Google Scholar 

  31. Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69–81.

    PubMed  Google Scholar 

  32. Tang, G. (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci, 30, 106–114.

    Article  PubMed  Google Scholar 

  33. Liquori, C.L., Ricker, K., Moseley, M.L., Jacobsen, J.F., Kress, W., Naylor, S.L., Day, J.W., and Ranum, L.P.W. (2001) Myotinic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science, 293, 864–867.

    Article  PubMed  Google Scholar 

  34. Fu, Y.H., Kuhl, D.P.A., Pizzuti, A., Pieretti, M., Sutcliffe, J.S., Richards, S. et al. (1991) Variation of the CGG repeat X site results in genetic instability. Resolution of Sherman paradox. Cell, 67, 1047–1058.

    Article  PubMed  Google Scholar 

  35. Hagerman, R.J., Staley, L.W., O’Conner, R., Lugenbeel, K., Nelson, D., McLean, S.D., and Taylor, A. (1996) Learning-disabled males with a fragile X CGG expansion in the upper premutation size range. Pediatrics, 97, 122–126.

    PubMed  Google Scholar 

  36. Jin, P., Zarnescu, D.C., Zhang, F., Pearson, C.E., Lucchesi, J.C., Moses, K., and Warren, S.T. (2003) RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila. Neuron, 39, 739–747.

    Article  PubMed  Google Scholar 

  37. Genc, B., Muller-Hartmann, H., Zeschnigk, M., Deissler, H., Schmitz, B., Majewski, F., von Gontard, A., and Doerfler, W. (2000) Methylation mosaicism of 5ʹ-(CGG)(n)-3ʹ repeats in fragile X, premutation and normal individuals. Nucleic Acids Res, 28, 2141–2152.

    Article  PubMed  Google Scholar 

  38. Jin, P., Alisch, R.S., and Warren, S.T. (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol, 6, 1048–1053.

    Article  PubMed  Google Scholar 

  39. Miyagishi, M. and Taira, K. (2002) U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol, 20, 497–500.

    Article  PubMed  Google Scholar 

  40. Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol, 20, 500–505.

    PubMed  Google Scholar 

  41. Paul, C.P., Good, P.D., Winer, I., and Engelke, D.R. (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol, 20, 505–508.

    Article  PubMed  Google Scholar 

  42. Xia, H., Mao, Q., Paulson, H.L., and Davidson, B.L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol, 20, 1006–1010.

    Article  PubMed  Google Scholar 

  43. McCaffrey, A.P., Meuse, L., Pham, T.T., Conklin, D.S., Hannon, G.J., and Kay, M.A. (2002) RNA interference in adult mice. Nature, 418, 38–39.

    Article  PubMed  Google Scholar 

  44. Gunnery, S., Ma, Y., and Mathews, M.B. (1999) Termination sequence requirements vary among genes transcribed by RNA polymerase III. J Mol Biol, 286, 745–757.

    Article  PubMed  Google Scholar 

  45. Schramm, L. and Hernandez, N. (2002) Recruitment of RNA polymerase III to its target promoters. Genes Dev, 16, 2593–2620.

    Article  PubMed  Google Scholar 

  46. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H., and Williams, B.R. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol, 5, 834–839.

    Article  PubMed  Google Scholar 

  47. Lin, S.L. and Ying, S.Y. (2004) Combinational therapy for HIV-1 eradication and vaccination. Int J Oncol, 24, 81–88.

    PubMed  Google Scholar 

  48. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. (1998) How cells respond to interferons. Annu Rev Biochem, 67, 227–264.

    Article  PubMed  Google Scholar 

  49. Grimm, D., Streetz, K.L., Jopling, C.L., Storm, T.A., Pandey, K., Davis, C.R., Marion, P., Salazar, F., and Kay, M.A. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.

    Article  PubMed  Google Scholar 

  50. Lin, S.L. and Ying, S.Y. (2004) New drug design for gene therapy – taking advantage of introns. Lett Drug Des Discov, 1, 256–262.

    Article  Google Scholar 

  51. Lin, S.L. and Ying, S.Y. (2004) Novel RNAi therapy – intron-derived microRNA drugs. Drug Des Rev, 1, 247–255.

    Google Scholar 

  52. Zhou, H.S.L., Xia, X.G., and Xu, Z. (2005) An RNA polymerase II construct synthesizes short hairpin RNA with a quantitative indicator and mediates high efficient RNAi. Nucleic Acid Res, 33, e62.

    Article  PubMed  Google Scholar 

  53. Chung, K.H., Hart, C.C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P.D., Vojtek, A.B., and Turner, D.L. (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acid Res, 34, e53.

    Article  PubMed  Google Scholar 

  54. Xia, X.G., Zhou, H., Samper, E., Melov, S., and Xu, Z. (2006) Pol II-expressed shRNA knocks down Sod2 gene expression and causes phenotypes of the gene knockout in mice. PLoS Genet, 2, e10.

    Article  PubMed  Google Scholar 

  55. Nott, A., Meislin, S.H., and Moore, M.J. (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA, 9, 607–617.

    Article  PubMed  Google Scholar 

  56. Zhang, G., Taneja, K.L., Singer, R.H., and Green, M.R. (1994) Localization of pre-mRNA splicing in mammalian nuclei. Nature, 372, 809–812.

    PubMed  Google Scholar 

  57. Ghosh, S. and Garcia-Blanco, M.A. (2000) Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA, 6, 1325–1334.

    Article  PubMed  Google Scholar 

  58. Bateman, J.R. and Wu, C.T. (2007) DNA replication and models for the origin of piRNAs. Bioessays, 29, 382–385.

    Article  PubMed  Google Scholar 

  59. Lin, S.L., Chang, D.C., and Ying, S.Y. (2007) Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis, 28, 310–320.

    Article  PubMed  Google Scholar 

  60. Lin, S.L. and Ying, S.Y. (2006) Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol, 342, 295–312.

    PubMed  Google Scholar 

  61. Lin, S.L., Chang, S.J.E., and Ying, S.Y. (2006) Transgene-like animal model using intronic microRNAs. Methods Mol Biol, 342, 321–334.

    PubMed  Google Scholar 

  62. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V.N. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.

    PubMed  Google Scholar 

  63. Butz, S. and Larue, L. (1995) Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhes Commun, 3, 337–352.

    Article  PubMed  Google Scholar 

  64. Lin, S.L., Suksaweang, S., Chuong, C.M., and Ying, S.Y. (2001) D-RNAi (Messenger RNA-antisense DNA interference) as a novel defense system against cancer and viral infections. Curr Cancer Drug Targets, 1, 241–247.

    Article  PubMed  Google Scholar 

  65. Filipovska, J. and Konarska, M.M. (2000) Specific HDV RNA-templated transcription by pol II in vitro. RNA, 6, 41–54.

    Article  PubMed  Google Scholar 

  66. Modahl, L.E., Macnaughton, T.B., Zhu, N., Johnson, D.L., and Lai, M.M. (2000) RNA-dependent replication and transcription of hepatitis delta virus RNA involve distinct cellular RNA polymerases. Mol Cell Biol, 20, 6030–6039.

    Article  PubMed  Google Scholar 

  67. Vagin, V.V., Sigova, A., Li, C., Seitz, H., Gvozdev, V., and Zamore, P.D. (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313, 320–324.

    Article  PubMed  Google Scholar 

  68. Carmell, M.A., Girard, A., van de Kant, H.J., Bourc’his, D., Bestor, T.H., de Rooij, D.G., and Hamnon, G.J. (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell, 12, 503–514.

    Article  PubMed  Google Scholar 

  69. Abzhanov, A., Protas, M., Grant, B.R., Grant, P.R., and Tabin, C.J. (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science, 305, 1462–1465.

    Article  PubMed  Google Scholar 

  70. Wu, P., Jiang, T.X., Suksaweang, S., Widelitz, R.B., and Chuong, C.M. (2004) Molecular shaping of the beak. Science, 305, 1465–1466.

    PubMed  Google Scholar 

  71. Sheth, U. and Parker, R. (2006) Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell, 125, 1095–1109.

    Article  PubMed  Google Scholar 

  72. Kovacs, J.A., Vogel, S., Albert, J.M., Falloon, J., Davey, R.T., Jr., Walker, R.E., Polis, M.A., Spooner, K., Metcalf, J.A., Baseler, M., Fyfe, G., and Lane, H.C. (1996) Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med, 335, 1350–1356.

    Article  PubMed  Google Scholar 

  73. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  Google Scholar 

  74. Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  Google Scholar 

  75. Okita, K., Ichisaka, T., and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317.

    Article  PubMed  Google Scholar 

  76. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318–324.

    Article  PubMed  Google Scholar 

  77. Simonsson, S. and Gurdon, J.B. (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol, 6, 984–990.

    Article  PubMed  Google Scholar 

  78. Murchison, E.P., Stein, P., Xuan, Z., Pan, H., Zhang, M.Q., Schultz, R.M., and Hannon, G.J. (2007) Critical roles for Dicer in the female germline. Genes Dev, 21, 682–693.

    Article  PubMed  Google Scholar 

  79. Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S.C., Sun, Y.A., Lee, C., Tarakhovsky, A., Lao, K., and Surani, M.A. (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev, 21, 644–648.

    Article  PubMed  Google Scholar 

  80. Suh, M.R., Lee, Y., Kim, J.Y., Kim, S.K., Moon, S.H., Lee, J.Y., Cha, K.Y., Chung, H.M., Yoon, H.S., Moon, S.Y., Kim, V.N., and Kim, K.S. (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 270, 488–498.

    Article  PubMed  Google Scholar 

  81. Lin, S.L., Chang, D.C., Chang-Lin, S., Lin, C.H., Wu, D.T., Chen, D.T., and Ying, S.Y. (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 14, 2115–2124.

    Google Scholar 

  82. Lin, S.L., Kim, H., and Ying, S.Y. (2008) Intron-mediated RNA interference and microRNA (miRNA). Front Biosci, 13, 2216–2230.

    PubMed  Google Scholar 

  83. Sherr, C.J. and Roberts, J.M. (2008) Living with or without cyclins and cyclin-dependent kinases. Genes Dev, 18, 2699–2711.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ying, SY., Chang, C.P., Lin, SL. (2010). Intron-Mediated RNA Interference, Intronic MicroRNAs, and Applications. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics