Skip to main content

Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

Abstract

Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir, S.M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  3. Maniataki, E. and Mourelatos, Z. (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev, 19, 2979–2990.

    Article  PubMed  CAS  Google Scholar 

  4. Kutter, C. and Svoboda, P. (2008) miRNA, siRNA, piRNA: knowns of the unknown. RNA Biol, 5, 181–188.

    PubMed  CAS  Google Scholar 

  5. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R., and Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucl Acids Res, 32, 936–948.

    Article  PubMed  CAS  Google Scholar 

  6. Taxman, D.J., Livingstone, L.R., Zhang, J., Conti, B.J., Iocca, H.A., Williams, K.L., Lich, J.D., Ting, J.P., and Reed, W. (2006) Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol, 6, 7.

    Article  PubMed  Google Scholar 

  7. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat Biotechnol, 22, 326–330.

    Article  PubMed  CAS  Google Scholar 

  8. Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun, 316, 1050–1058.

    Article  PubMed  CAS  Google Scholar 

  9. Taxman, D.J. (2009) siRNA and shRNA design. In: Helliwell, T.D.C. (Ed.) RNA Interference Methods for Plants and Animals. CABI, Oxfordshire, UK, Chapter 10, pp. 228–253.

    Google Scholar 

  10. Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 430, 213–218.

    Article  PubMed  CAS  Google Scholar 

  11. Martinon, F., Burns, K., and Tschopp, J. (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell, 10, 417–426.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, M.T., Taxman, D.J., Holley-Guthrie, E.A., Moore, C.B., Willingham, S.B., Madden, V., Parsons, R.K., Featherstone, G.L., Arnold, R.R., O’Connor, B.P. et al. (2009) Critical role of apoptotic speck protein containing a caspase recruitment domain (ASC) and NLRP3 in causing necrosis and ASC speck formation induced by Porphyromonas gingivalis in human cells. J Immunol, 182, 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  13. Taxman, D.J., Zhang, J., Champagne, C., Bergstralh, D.T., Iocca, H.A., Lich, J.D., and Ting, J.P. (2006) Cutting edge: ASC mediates the induction of multiple cytokines by Porphyromonas gingivalis via caspase-1-dependent and -independent pathways. J Immunol, 177, 4252–4256.

    PubMed  CAS  Google Scholar 

  14. An, D.S., Donahue, R.E., Kamata, M., Poon, B., Metzger, M., Mao, S.H., Bonifacino, A., Krouse, A.E., Darlix, J.L., Baltimore, D. et al. (2007) Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc Natl Acad Sci USA, 104, 13110–13115.

    Article  PubMed  CAS  Google Scholar 

  15. Brummelkamp, T.R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  17. Xia, H., Mao, Q., Paulson, H.L., and Davidson, B.L. (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol, 20, 1006–1010.

    Article  PubMed  CAS  Google Scholar 

  18. Denti, M.A., Rosa, A., Sthandier, O., De Angelis, F.G., and Bozzoni, I. (2004) A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther, 10, 191–199.

    Article  PubMed  CAS  Google Scholar 

  19. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc Natl Acad Sci USA, 101, 1927–1932.

    Article  PubMed  CAS  Google Scholar 

  20. Unwalla, H.J., Li, M.J., Kim, J.D., Li, H.T., Ehsani, A., Alluin, J., and Rossi, J.J. (2004) Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA. Nat Biotechnol, 22, 1573–1578.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis, J., Melrose, H., Bumcrot, D., Hope, A., Zehr, C., Lincoln, S., Braithwaite, A., He, Z., Ogholikhan, S., Hinkle, K. et al. (2008) In vivo silencing of alpha-synuclein using naked siRNA. Mol Neurodegener, 3, 19.

    Article  PubMed  Google Scholar 

  22. Vlachaki, M.T., Hernandez-Garcia, A., Ittmann, M., Chhikara, M., Aguilar, L.K., Zhu, X., Teh, B.S., Butler, E.B., Woo, S., Thompson, T.C. et al. (2002) Impact of preimmunization on adenoviral vector expression and toxicity in a subcutaneous mouse cancer model. Mol Ther, 6, 342–348.

    Article  PubMed  CAS  Google Scholar 

  23. Monahan, P.E., Jooss, K., and Sands, M.S. (2002) Safety of adeno-associated virus gene therapy vectors: a current evaluation. Expert Opin Drug Saf, 1, 79–91.

    Article  PubMed  CAS  Google Scholar 

  24. Bot, I., Guo, J., Van Eck, M., Van Santbrink, P.J., Groot, P.H., Hildebrand, R.B., Seppen, J., Van Berkel, T.J., and Biessen, E.A. (2005) Lentiviral shRNA silencing of murine bone marrow cell CCR2 leads to persistent knockdown of CCR2 function in vivo. Blood, 106, 1147–1153.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Baltimore for supplying us with FG12. We thank Dr. Jenny Ting for her support and guidance. These studies were supported by grants 1-RO1-DE016326 and 1-U54-AI057157.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Taxman, D.J., Moore, C.B., Guthrie, E.H., Huang, M.TH. (2010). Short Hairpin RNA (shRNA): Design, Delivery, and Assessment of Gene Knockdown. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics