Skip to main content

An Efficient Protocol for VZV BAC-Based Mutagenesis

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

Varicella-zoster virus (VZV) causes both varicella (chicken pox) and herpes zoster (shingles). As a member of the human herpesvirus family, VZV contains a large 125-kb DNA genome, encoding 70 unique open reading frames (ORFs). The genetic study of VZV has been hindered by the large size of viral genome, and thus the functions of the majority of these ORFs remain unclear. Recently, an efficient protocol has been developed based on a luciferase-containing VZV bacteria artificial chromosome (BAC) system to rapidly isolate and study VZV ORF deletion mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abendroth A, Arvin AM (1999) Varicella-zoster virus immune evasion. Immunol Rev 168:143–156

    Article  PubMed  CAS  Google Scholar 

  2. Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ, Mahalingam R, Cohrs RJ (2000) Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med 342:635–645

    Article  PubMed  CAS  Google Scholar 

  3. Arvin AM (2001) Varicella-zoster virus. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2731–2767

    Google Scholar 

  4. Davison AJ, Scott J (1986) The complete DNA sequence of varicella zoster virus. J Gen Virol 67:1759–1816

    Article  PubMed  CAS  Google Scholar 

  5. Cohen JI, Seidel KE (1993) Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci USA 90:7376–7380

    Article  PubMed  CAS  Google Scholar 

  6. Mallory S, Sommer M, Arvin AM (1997) Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking. J Virol 71:8279–8288

    PubMed  CAS  Google Scholar 

  7. Niizuma T, Zerboni L, Sommer MH, Ito H, Hinchliffe S, Arvin AM (2003) Construction of varicella-zoster virus recombinants from P-Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol 77:6062–6065

    Article  PubMed  CAS  Google Scholar 

  8. Cohen JI, Straus SE, Arvin AM (2007) Varicella-zoster virus replication, pathogenesis, and management. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2773–2818

    Google Scholar 

  9. Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K (2004) Cloning of the varicella-zoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine 22:4069–4074

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Z, Rowe J, Wang W, Sommer M, Arvin A, Moffat J, Zhu H (2007) Genetic analysis of varicella zoster virus ORF0 to 4 using a novel luciferase bacterial artificial chromosome system. J Virol 81:9024–9033

    Article  PubMed  CAS  Google Scholar 

  11. Wang W, Patterson CE, Yang S, Zhu H (2004) Coupling generation of cytomegalovirus deletion mutants and amplification of viral BAC clones. J Virol Methods 121:137–143

    Article  PubMed  CAS  Google Scholar 

  12. Netterwald J, Yang S, Wang W, Ghanny S, Cody M, Soteropoulos P, Tian B, Dunn W, Liu F, Zhu H (2005) Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol 79:5035–5046

    Article  PubMed  CAS  Google Scholar 

  13. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  14. Tang QY, Zhang Z, Zhu H (2010) Bioluminesc-ence imaging for herpesvirus studies in vivo. In: Gluckman TR (ed) Herpesviridae: viral structure, life cycle and infections. Nova Science, Huntington, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, Z., Huang, Y., Zhu, H. (2010). An Efficient Protocol for VZV BAC-Based Mutagenesis. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics