Skip to main content

Mutagenesis of the Repeat Regions of Herpesviruses Cloned as Bacterial Artificial Chromosomes

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

Cloning of infectious and pathogenic herpesvirus genomes in a bacterial artificial chromosome (BAC) vector greatly facilitates genetic manipulation of their genomes. BAC-based mutagenesis strategies of viruses can advance our understanding of the viral gene functions and determinants of pathogenicity, and can ultimately help to develop molecularly defined improved vaccines against virus diseases. Unlike the virus stocks, where continuous passage in tissue culture can lead to phenotypic alterations such as loss of virulence or immunogenicity, viral genomes can be stably maintained with high fidelity as BAC clones in bacteria. Thanks to the “RecA” or the inducible phage “λ Red” homologous recombination systems and a variety of positive and negative selection strategies, viral genomes cloned as BAC can be efficiently manipulated in E. coli. All the manipulations, including DNA fragment deletion or insertion, point mutations, or even multiple modifications in repeat regions can be carried out accurately in E. coli, and the mutated DNA can be used directly to reconstitute mutant viruses in transfected host cells. Furthermore, using self-excision strategies, the non-viral bacterial replicon sequence can be excised automatically during virus reconstitution, thus generating recombinant viruses virtually identical to the wild-type parent viruses. Here, we describe the various technologies of manipulating the infectious BAC clones of a group E herpesvirus as an example through a combination of different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith GA, Enquist LW (2000) A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc Natl Acad Sci U S A A97:4873–4878

    Article  Google Scholar 

  2. Yu D, Smith GA, Enquist LW, Shenk T (2002) Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J Virol 76:2316–2328

    Article  PubMed  CAS  Google Scholar 

  3. Zhao Y, Petherbridge L, Smith LP, Baigent S, Nair V (2008) Self-excision of the BAC sequences from the recombinant Marek’s disease virus genome increases replication and pathogenicity. Virol J 5:19

    Article  PubMed  Google Scholar 

  4. Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J Virol 77:1382–1391

    Article  PubMed  CAS  Google Scholar 

  5. Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N (2007) A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 81:13200–13208

    Article  PubMed  CAS  Google Scholar 

  6. Rudolph J, O’Callaghan DJ, Osterrieder N (2002) Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and racL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health 49:31–36

    Article  PubMed  CAS  Google Scholar 

  7. Petherbridge L, Brown AC, Baigent SJ et al (2004) Oncogenicity of virulent Marek’s disease virus cloned as bacterial artificial chromosomes. J Virol 78:13376–13380

    Article  PubMed  CAS  Google Scholar 

  8. Baigent SJ, Petherbridge LJ, Smith LP, Zhao Y, Chesters PM, Nair VK (2006) Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek’s disease. J Gen Virol 87:769–776

    Article  PubMed  CAS  Google Scholar 

  9. Costes B, Fournier G, Michel B et al (2008) Cloning of the koi herpesvirus genome as an infectious bacterial artificial chromosome demonstrates that disruption of the thymidine kinase locus induces partial attenuation in Cyprinus carpio koi. J Virol 82:4955–4964

    Article  PubMed  CAS  Google Scholar 

  10. Kanda T, Yajima M, Ahsan N, Tanaka M, Takada K (2004) Production of high-titer Epstein-Barr virus recombinants derived from Akata cells by using a bacterial artificial chromosome system. J Virol 78:7004–7015

    Article  PubMed  CAS  Google Scholar 

  11. Zhou FC, Zhang YJ, Deng JH et al (2002) Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 76:6185–6196

    Article  PubMed  CAS  Google Scholar 

  12. Estep RD, Powers MF, Yen BK, Li H, Wong SW (2007) Construction of an infectious rhesus rhadinovirus bacterial artificial chromosome for the analysis of Kaposi’s sarcoma-associated herpesvirus-related disease development. J Virol 81:2957–2969

    Article  PubMed  CAS  Google Scholar 

  13. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  PubMed  CAS  Google Scholar 

  14. Lee EC, Yu D, Martinez de Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  15. Borst EM, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 73:8320–8329

    PubMed  CAS  Google Scholar 

  16. Sopher BL, La Spada AR (2006) Efficient recombination-based methods for bacterial artificial chromosome fusion and mutagenesis. Gene 371:136–143

    Article  PubMed  CAS  Google Scholar 

  17. Gay P, Le Coq D, Steinmetz M, Ferrari E, Hoch JA (1983) Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J Bacteriol 153:1424–1431

    PubMed  CAS  Google Scholar 

  18. Wong QN, Ng VC, Lin MC, Kung HF, Chan D, Huang JD (2005) Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli. Nucleic Acids Res 33:e59

    Article  PubMed  Google Scholar 

  19. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    Article  PubMed  Google Scholar 

  20. Posfai G, Kolisnychenko V, Bereczki Z, Blattner FR (1999) Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res 27:4409–4415

    Article  PubMed  CAS  Google Scholar 

  21. Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nikolaus Osterrieder for providing pBAC-I-SceI and pEPKan-S plasmids; Dr. Neal G. Copeland for pgalK plasmid and bacterial strain SW102, SW105, and SW106. The protocols are modified from the publication of Warming et al. (2005) (19) and Tischer et al. (2006) (21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venugopal Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhao, Y., Nair, V. (2010). Mutagenesis of the Repeat Regions of Herpesviruses Cloned as Bacterial Artificial Chromosomes. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics