Skip to main content

In Vitro Mutagenesis of Brucella Species

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

Three major techniques have been employed for broad-range in vitro mutagenesis of Brucella species. Shotgun approaches capable of generating large libraries of randomly inserted transposon mutants include Tn5, mariner (Himar1), and mini-Tn5 signature-tagged mutagenesis. Allelic exchange has also been extensively employed for targeted gene deletion. In general, plasmid and transposon delivery into Brucella has relied upon electroporation; however, conjugation has also been successfully employed. Both approaches have been used to identify critical virulence determinants necessary for disease and intracellular survival of the organism. Perhaps more importantly these approaches have provided an opportunity to develop attenuated vaccine candidates of improved safety and efficacy. Future experiments are designed to identify individual functions that govern the interaction between host and agent and control intracellular trafficking and survival. Toward this goal, this chapter describes current approaches used to mutagenize Brucella spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Bressem MF, Van Waerebeek K, Raga JA, Godfroid J, Brew SD, MacMillan AP (2001) Serological evidence of Brucella species infection in odontocetes from the south Pacific and the Mediterranean. Vet Rec 148:657–661

    Article  PubMed  Google Scholar 

  2. Retamal P, Blank O, Abalos P, Torres D (2000) Detection of anti-Brucella antibodies in pinnipeds from the Antarctic territory. Vet Rec 146:166–167

    Article  PubMed  CAS  Google Scholar 

  3. Ohishi K, Zenitani R, Bando T et al (2003) Pathological and serological evidence of Brucella-infection in baleen whales (Mysticeti) in the western North Pacific. Comp Immunol Microbiol Infect Dis 26:125–136

    Article  PubMed  Google Scholar 

  4. Seleem MN, Boyle SM, Sriranganathan N (2008) Brucella: a pathogen without classic virulence genes. Vet Microbiol 129:1–14

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein J, Hoffman T, Frasch C et al (1992) Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines. Infect Immun 60:1385–1389

    PubMed  CAS  Google Scholar 

  6. Pei J, Turse JE, Wu Q, Ficht TA (2006) Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun 74:2667–2675

    Article  PubMed  CAS  Google Scholar 

  7. Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O’Callaghan D (2000) Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303

    Article  PubMed  CAS  Google Scholar 

  8. Wu Q, Pei J, Turse C, Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival. BMC Microbiol 6:102

    Article  PubMed  Google Scholar 

  9. Allen CA, Adams LG, Ficht TA (1998) Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66:1008–1016

    PubMed  CAS  Google Scholar 

  10. Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107

    Article  PubMed  CAS  Google Scholar 

  11. Lai F, Schurig GG, Boyle SM (1990) Electroporation of a suicide plasmid bearing a transposon into Brucella abortus. Microb Pathog 9:363–368

    Article  PubMed  CAS  Google Scholar 

  12. Burkhardt S, Jimenez de Bagues MP, Liautard JP, Kohler S (2005) Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun 73:6782–6790

    Article  PubMed  CAS  Google Scholar 

  13. den Hartigh AB, Sun YH, Sondervan D et al (2004) Differential requirements for VirB1 and VirB2 during Brucella abortus infection. Infect Immun 72:5143–5149

    Article  Google Scholar 

  14. Kahl-McDonagh MM, Ficht TA (2006) Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74:4048–4057

    Article  PubMed  CAS  Google Scholar 

  15. Ocampo-Sosa AA, Garcia-Lobo JM (2008) Demonstration of IS711 transposition in Brucella ovis and Brucella pinnipedialis. BMC Microbiol 8:17

    Article  PubMed  Google Scholar 

  16. Haine V, Dozot M, Dornand J, Letesson JJ, De Bolle X (2006) NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol 188:1615–1619

    Article  PubMed  CAS  Google Scholar 

  17. Valderas MW, Alcantara RB, Baumgartner JE et al (2005) Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 107:307–212

    Article  PubMed  CAS  Google Scholar 

  18. Elzer PH, Phillips RW, Kovach ME, Peterson KM, Roop RM II (1994) Characterization and genetic complementation of a Brucella abortus high-temperature-requirement A (htrA) deletion mutant. Infect Immun 62:4135–4139

    PubMed  CAS  Google Scholar 

  19. Robertson GT, Reisenauer A, Wright R et al (2000) The Brucella abortus CcrM DNA methyltransferase is essential for viability, and its overexpression attenuates intracellular replication in murine macrophages. J Bacteriol 182:3482–3489

    Article  PubMed  CAS  Google Scholar 

  20. Pei J, Wu Q, Kahl-McDonagh M, Ficht TA (2008) Cytotoxicity in macrophages infected with rough Brucella mutants is type IV secretion system dependent. Infect Immun 76:30–37

    Article  PubMed  CAS  Google Scholar 

  21. Godfroid F, Taminiau B, Danese I et al (1998) Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages. Infect Immun 66:5485–5493

    PubMed  CAS  Google Scholar 

  22. McQuiston JR, Schurig GG, Sriranganathan N, Boyle SM (1995) Transformation of Brucella species with suicide and broad host-range plasmids. Methods Mol Biol 47:143–8

    PubMed  CAS  Google Scholar 

  23. Brown JS, Aufauvre-Brown A, Brown J, Jennings JM, Arst H Jr, Holden DW (2000) Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol 36:1371–1380

    Article  PubMed  CAS  Google Scholar 

  24. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  PubMed  CAS  Google Scholar 

  25. Schweizer HP, Hoang TT (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22

    Article  PubMed  CAS  Google Scholar 

  26. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    Article  PubMed  CAS  Google Scholar 

  27. Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246:321–330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of NIH (R01048496) and the WRCE (1U54AI057156-0100) for the construction of B. melitensis mutant banks and the USDA (99-35204-7550) for the development of B. abortus mutant banks. We gratefully acknowledge the contributions of Chris Allen, Renée Tsolis, Priscilla Hong, and Carol Turse without whose efforts this publication would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Ficht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ficht, T.A., Pei, J., Kahl-McDonagh, M. (2010). In Vitro Mutagenesis of Brucella Species. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics