Skip to main content

A Detailed Protocol for Chromatin Immunoprecipitation in the Yeast Saccharomyces cerevisiae

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 638))

Abstract

Critical cellular processes such as DNA replication, DNA damage repair, and transcription are mediated and regulated by DNA-binding proteins. Many efforts have been invested therefore in developing methods that monitor the dynamics of protein-DNA association. As older techniques such as DNA footprinting, and electrophoretic mobility shift assays (EMSA) could be applied mostly in vitro, the development of the chromatin immunoprecipitation (ChIP) method, which allows quantitative measurement of protein-bound DNA most accurately in vivo, revolutionized our capabilities of understanding the mechanisms underlying the aforementioned processes. Furthermore, this powerful tool could be applied at the genomic-scale providing a global picture of the protein-DNA complexes at the entire genome.

The procedure is conceptually simple; involves rapid crosslinking of proteins to DNA by the addition of formaldehyde to the culture, shearing the DNA and immunoprecipitating the protein of interest while covalently bound to its DNA targets. Following decrosslinking, DNA that was coimmunoprecipitated could be amplified by PCR or could serve as a probe of a genomic microarray to identify all DNA fragments that were bound to the protein.

Although simple in principle, the method is not trivial to implement and the results might be misleading if proper controls are not included in the experiment. In this chapter, we provide therefore a highly detailed protocol of ChIP assay as is applied successfully in our laboratory. We pay special attention to describe every small detail, in order that any investigator could readily and successfully apply this important and powerful technology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bhaumik SR, Green MR (2002) Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol Cell Biol 22:7365–7371

    Article  CAS  PubMed  Google Scholar 

  2. Geisberg JV, Struhl K (2004) Cellular stress alters the transcriptional properties of promoter-bound Mot1-TBP complexes. Mol Cell 14:479–489

    Article  CAS  PubMed  Google Scholar 

  3. Jasiak AJ, Hartmann H, Karakasili E, Kalocsay M, Flatley A, Kremmer E, Strasser K, Martin DE, Soding J, Cramer P (2008) Genome-associated RNA polymerase II includes the dissociable Rpb4/ 7 subcomplex. J Biol Chem 283:26423–26427

    Article  CAS  PubMed  Google Scholar 

  4. Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF (2002) RNA polymerase II elongation factors of Saccharo-myces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22:6979–6992

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Lin Q, Wang W, Wade P, Wong J (2002) Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 16:687–692

    Article  CAS  PubMed  Google Scholar 

  6. Moqtaderi Z, Struhl K (2004) Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol 24:4118–4127

    Article  CAS  PubMed  Google Scholar 

  7. Radonjic M, Andrau JC, Lijnzaad P, Kemmeren P, Kockelkorn TT, van Leenen D, van Berkum NL, Holstege FC (2005) Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol Cell 18:171–183

    Article  CAS  PubMed  Google Scholar 

  8. Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M (2002) Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109:437–446

    Article  CAS  PubMed  Google Scholar 

  9. Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, Hartzog GA, Arndt KM (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 22:1846–1856

    Article  CAS  PubMed  Google Scholar 

  10. Vogelauer M, Wu J, Suka N, Grunstein M (2000) Global histone acetylation and deacetylation in yeast. Nature 408:495–498

    Article  CAS  PubMed  Google Scholar 

  11. Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282:26132–26139

    Article  CAS  PubMed  Google Scholar 

  12. Krebs JE, Kuo MH, Allis CD, Peterson CL (1999) Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 13:1412–1421

    Article  CAS  PubMed  Google Scholar 

  13. Kuras L, Borggrefe T, Kornberg RD (2003) Association of the mediator complex with enhancers of active genes. Proc Natl Acad Sci U S A 100:13887–13891

    Article  CAS  PubMed  Google Scholar 

  14. Larschan E, Winston F (2001) The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 15:1946–1956

    Article  CAS  PubMed  Google Scholar 

  15. Swanson MJ, Qiu H, Sumibcay L, Krueger A, Kim SJ, Natarajan K, Yoon S, Hinnebusch AG (2003) A multiplicity of coactivators is required by Gcn4p at individual promoters in vivo. Mol Cell Biol 23:2800–2820

    Article  CAS  PubMed  Google Scholar 

  16. Deckert J, Struhl K (2001) Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 21:2726–2735

    Article  CAS  PubMed  Google Scholar 

  17. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    Article  CAS  PubMed  Google Scholar 

  19. Roh TY, Ngau WC, Cui K, Landsman D, Zhao K (2004) High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22:1013–1016

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein BE, Liu CL, Humphrey EL, Perlstein EO, Schreiber SL (2004) Global nucleosome occupancy in yeast. Genome Biol 5:R62

    Article  PubMed  Google Scholar 

  21. Alepuz PM, de Nadal E, Zapater M, Ammerer G, Posas F (2003) Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J 22:2433–2442

    Article  CAS  PubMed  Google Scholar 

  22. Pokholok DK, Zeitlinger J, Hannett NM, Reynolds DB, Young RA (2006) Activated signal transduction kinases frequently occupy target genes. Science 313:533–536

    Article  CAS  PubMed  Google Scholar 

  23. Aparicio O, Geisberg JV, Sekinger E, Yang A, Moqtaderi Z, Struhl K (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. In: Ausubel FM, Brent R, Kington RE, Moore DD, Seidman JG, Smith JA, Struhl KE (eds) Current protocols in molecular biology. Wiley, New York, pp 21.3.1-21.3.33

    Google Scholar 

  24. Ezhkova E, Tansey WP (2004) Chromatin immunoprecipitation to study Protein-DNA Interactions in Budding Yeast, vol 313, 2nd edn, Methods in molecular biology. Humana Press Inc, Totawa, NJ, pp 225–244

    Google Scholar 

  25. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2

    Article  PubMed  Google Scholar 

  26. Ren B, Dynlacht BD (2003) Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol 376:304–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grably, M., Engelberg, D. (2010). A Detailed Protocol for Chromatin Immunoprecipitation in the Yeast Saccharomyces cerevisiae . In: Sharon, A. (eds) Molecular and Cell Biology Methods for Fungi. Methods in Molecular Biology, vol 638. Humana Press. https://doi.org/10.1007/978-1-60761-611-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-611-5_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-610-8

  • Online ISBN: 978-1-60761-611-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics