Skip to main content

Measuring Protein Kinase and Sugar Kinase Activity in Plant Pathogenic Fusarium Species

  • Protocol
  • First Online:
Molecular and Cell Biology Methods for Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 638))

  • 4496 Accesses

Abstract

As ubiquitous metabolic and signaling intermediaries, kinases regulate innumerable aspects of fungal growth and development. At its simplest, the enzymatic function of a kinase is to transfer a phosphate from a donor molecule (such as adenosine triphosphate) to an acceptor molecule, such as a protein, carbohydrate, or lipid. Kinase activity is intricately interwoven into signal transduction, and ultimately modulates gene expression, downstream phosphorylation events, and other mechanisms of posttranslational modification. Therefore, sensitive and reproducible techniques to measure kinase activity are crucial to elucidate cellular signaling and for fungal functional genomics.

Protein and sugar kinases regulate multiple aspects of pathogenesis in the mycotoxigenic, plant pathogenic fungi Fusarium graminearum, and Fusarium verticillioides. Here, we present protocols to (1) quantify phosphorylation of mitogen-activated protein kinases in F. graminearum, and (2) determine glucokinase activity in F. verticillioides. The mitogen-activated protein kinase phosphorylation assay utilizes immunological methods to quantify substrate phosphorylation, whereas the glucokinase assay is a coupled enzyme assay, in which phosphorylation of glucose by glucokinase is measured indirectly through the subsequent reduction of NADP+ to NADPH, a substrate more amenable for spectrophotometric detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27:514–520

    Article  CAS  PubMed  Google Scholar 

  2. Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773:1311–1340

    Article  CAS  PubMed  Google Scholar 

  3. MacCorkle RA, Tan TH (2005) Mitogen-activated protein kinases in cell-cycle control. Cell Biochem Biophys 43:451–461

    Article  CAS  PubMed  Google Scholar 

  4. Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127

    Article  CAS  PubMed  Google Scholar 

  5. Jenczmionka NJ, Maier FJ, Lösch AP, Schäfer W (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95

    CAS  PubMed  Google Scholar 

  6. Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle L (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 20:627–636

    Article  CAS  PubMed  Google Scholar 

  7. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532

    Article  CAS  PubMed  Google Scholar 

  8. Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    Article  CAS  PubMed  Google Scholar 

  9. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  10. Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B-1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18:1333–1339

    Article  CAS  PubMed  Google Scholar 

  11. Bluhm BH, Kim H, Butchko RA, Woloshuk CP (2008) Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol 9:203–211

    Article  CAS  PubMed  Google Scholar 

  12. Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burton H. Bluhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bluhm, B.H., Zhao, X. (2010). Measuring Protein Kinase and Sugar Kinase Activity in Plant Pathogenic Fusarium Species. In: Sharon, A. (eds) Molecular and Cell Biology Methods for Fungi. Methods in Molecular Biology, vol 638. Humana Press. https://doi.org/10.1007/978-1-60761-611-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-611-5_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-610-8

  • Online ISBN: 978-1-60761-611-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics