Synthesis of Antimicrobial Peptides Using the SPOT Technique

  • Dirk F. H. Winkler
  • Kai Hilpert
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Developing new lead structures for drugs against multiresistant bacteria is an urgent need for modern medicine. Antimicrobial peptides are a class of drugs that can be used to discover such structures. In order to support development of this research, a fast, easy, and inexpensive method to synthesize peptides is necessary. The SPOT synthesis has the potential to produce the required peptide arrays, synthesizing up to 8,000 peptides, peptide mixtures, or other organic compounds on cellulose or other planar surfaces in a positionally addressable and multiple manner. Protocols for the preparation of cellulose membranes and the SPOT synthesis as well as cleavage of peptides from the support are described.

Key words

SPOT synthesis peptide array screening antimicrobial peptides cellulose membranes 

References

  1. 1.
    Jenssen, H., Hamill, P., and Hancock, R. E. W. (2006) Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.PubMedCrossRefGoogle Scholar
  2. 2.
    Sørensen, O. E., Borregaard, N., and Cole, A. M. (2008) Antimicrobial peptides in innate immune responses. Contrib. Microbiol. 15, 61–77.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang, L. and Falla, T. J. (2006) Antimicrobial peptides: Therapeutic potential. Expert Opin. Pharmacother. 7, 653–663.PubMedCrossRefGoogle Scholar
  4. 4.
    Weber, G., Chamorro, C. I., Granath, F., Liljegren, A., Zreika, S., Saidak, Z., Sandstedt, B., Rotstein, S., Mentaverri, R., Sanchez, F., Pivarcsi, A., and Stahle, M. (2009) Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res. 11, R6. (Epub ahead of print).PubMedCrossRefGoogle Scholar
  5. 5.
    Frank, R. (1992) Spot-synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.CrossRefGoogle Scholar
  6. 6.
    Hilpert, K., Winkler, D. F. H., and Hancock, R. E. W. (2007) Cellulose-bound peptide arrays: Preparation and applications. Biotechnol. Genet. Eng. Rev. 24, 31–106.Google Scholar
  7. 7.
    Kramer, A. and Schneider-Mergener, J. (1998) Synthesis and application of peptide libraries bound to continuous cellulose membranes. Methods Mol. Biol. 87, 25–39.PubMedGoogle Scholar
  8. 8.
    Gausepohl, H. and Behn, C. (2002) Automated synthesis of solid-phase bound peptides. In Peptide Arrays on Membrane Support. J. Koch and M. Mahler (Eds.), pp. 55–68. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  9. 9.
    Molina, F., Laune, D., Gougat, C., Pau, B., and Granier, C. (1996) Improved performances of spot multiple peptide synthesis. Peptide Res. 9, 151–155.Google Scholar
  10. 10.
    Kramer, A., Reineke, U., Dong, L., Hoffmann, B., Hoffmüller, U., Winkler, D., Volkmer-Engert, R., and Schneider-Mergener, J. (1999) Spot-synthesis: observations and optimizations. J. Peptide Res. 54, 319–327.CrossRefGoogle Scholar
  11. 11.
    Frank, R., Hoffmann, S., Overwin, H., Behn, C., and Gausepohl, H. (1996) Easy preparation of synthetic peptide repertoires for immunological studies utilizing SPOT synthesis. In Peptides in Immunology. C. H. Schneider (Ed.), pp. 197–204. New York: John Wiley & Sons, Ltd.Google Scholar
  12. 12.
    Beutling, U., Städing, K., Stradal, T., and Frank, R. (2008) Large-scale analysis of protein–protein interactions using cellulose-bound peptide arrays. Adv. Biochem. Eng. Biotechnol. 110, 115–152.PubMedGoogle Scholar
  13. 13.
    Winkler, D. F. H. and Campbell, W. D. (2008) The spot technique: Synthesis and screening of peptide macroarrays on cellulose membranes. Methods Mol. Biol. 494, 47–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Otvos, L., Jr., Pease, A. M., Bokonyi, K., Giles-Davis, W., Rogers, M. E., Hintz, P. A., Hoffman, R., and Ertl, H. C. J. (2000) In situ stimulation of a T helper cell hybridoma with a cellulose-bound peptide antigen. J. Immunol. Methods 233, 95–1051.PubMedCrossRefGoogle Scholar
  15. 15.
    Cherkasov, A., Hilpert, K., Jenssen, H., Fjell, C. D., Waldbrook, M., Mullaly, S. C., Volkmer, R., and Hancock, R. E. W. (2009) Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol. 4, 65–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Hilpert, K., Elliott, M. R., Volkmer-Engert, R., Henklein, P., Donini, O., Zhou, Q., Winkler, D. F. H., and Hancock, R. E. W. (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem. Biol. 13, 1101–1107.PubMedCrossRefGoogle Scholar
  17. 17.
    Hilpert, K., Elliott, M., Jenssen, H., Kindrachuk, J., Fjell, C. D., Körner, J., Winkler, D. F. H., Weaver, L. L., Henklein, P., Ulrich, A. S., Chiang, S. H., Farmer, S. W., Pante, N., Volkmer, R., and Hancock, R. E. W. (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem. Biol. 16, 58–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Hilpert, K., Winkler, D. F. H., and Hancock, R. E. W. (2007) Peptide arrays on cellulose support: SPOT synthesis – a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc. 2, 1333–1349.PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider-Mergener, J., Kramer, A., and Reineke, U. (1996) Peptide libraries bound to continuous cellulose membranes: Tools to study molecular recognition. In Combinatorial Libraries: Synthesis, Screening and Application Potential. R. Cortese (Ed.), pp. 53–68. Berlin: Walter de Gruyter & Co.Google Scholar
  20. 20.
    Weiler, J., Gausepohl, H., Hauser, N., Jensen, O. N., and Hoheisel, J. D. (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res. 25, 2792–2799.PubMedCrossRefGoogle Scholar
  21. 21.
    Bowman, M. D., Jacobson, M. M., and Blackwell, H. E. (2006) Discovery of fluorescent cyanopyridine and deazalumazine dyes using small molecule macroarrays. Org. Lett. 8, 1645–1648.PubMedCrossRefGoogle Scholar
  22. 22.
    Hilpert, K. and Hancock, R. E. W. (2007) Use of luminescent bacteria for rapid screening and characterization of short cationic antimicrobial peptides synthesized on cellulose using peptide array technology. Nat. Protoc. 2, 1652–1660.PubMedCrossRefGoogle Scholar
  23. 23.
    Martens, W., Greiser-Wilke, I., Harder, T. C., Dittmar, K., Frank, R., Örvell, C., Moenning, V., and Liess, B. (1995) Spot synthesis of overlapping peptides on paper membrane supports enables the identification of linear monoclonal antibody binding determinants on morbillivirus phosphoproteins. Vet. Microbiol. 44, 289–298.PubMedCrossRefGoogle Scholar
  24. 24.
    Santona, A., Carta, F., Fraghi, P., and Turrini, F. (2002) Mapping antigenic sites of an immunodominant surface lipoprotein of Mycoplasma agalactiae, AvgC, with the use of synthetic peptides. Infect. Immun. 70, 171–176.PubMedCrossRefGoogle Scholar
  25. 25.
    Fields, G. B. and Noble, R. L. (1990) Solid phase synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161–214.PubMedCrossRefGoogle Scholar
  26. 26.
    Zander, N. and Gausepohl, H. (2002) Chemistry of Fmoc peptide synthesis on membranes. In Peptide Arrays on Membrane Support. J. Koch and M. Mahler (Eds.), pp. 23–39. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  27. 27.
    Atherton, E. and Sheppard, R. C. (1989) Activated esters of Fmoc-amino acids. In Solid Phase Peptide Synthesis – A Practical Approach. A. Giuliani, A. C. Rinaldi (eds.), pp. 76–78. Oxford, UK: IRL Press at Oxford University Press.Google Scholar
  28. 28.
    Krchnak, V., Wehland, J., Plessmann, U., Dodemont, H., Gerke, V., and Weber, W. (1988) Noninvasive continuous monitoring of solid phase peptide synthesis by acid–base indicator. Collect. Czech. Chem. Commun. 53, 2542–2548.CrossRefGoogle Scholar
  29. 29.
    Licha, K., Bhargava, S., Rheinlander, C., Becker, A., Schneider-Mergener, J., and Volkmer-Engert, R. (2000) Highly parallel nano-synthesis of cleavable peptide-dye conjugates on cellulose membranes. Tetrahedron Lett. 41, 1711–1715.CrossRefGoogle Scholar
  30. 30.
    Ast, T., Heine, N., Germeroth, L., Schneider-Mergener, J., and Wenschuh, H. (1999) Efficient assembly of peptomers on continuous surfaces. Tetrahedron Lett. 40, 4317–4318.CrossRefGoogle Scholar
  31. 31.
    Heine, N., Ast, T., Schneider-Mergener, J., Reineke, U., Germeroth, L., and Wenschuh, H. (2003) Synthesis and screening of peptoid arrays on cellulose membranes. Tetrahedron 59, 9919–9930.CrossRefGoogle Scholar
  32. 32.
    Boisguerin, P., Leben, R., Ay, B., Radziwill, G., Moelling, K., Dong, L., and Volkmer-Engert, R. (2004) An improved method for the synthesis of cellulose membrane-bound peptides with free C termini is useful for the PDZ domain binding studies. Chem. Biol. 11, 449–459.PubMedCrossRefGoogle Scholar
  33. 33.
    Volkmer-Engert, R., Hoffmann, B., and Schneider-Mergener, J. (1997) Stable attachment of the HMB-linker to continuous cellulose membranes for parallel solid phase spot synthesis. Tetrahedron Lett. 38, 1029–1032.CrossRefGoogle Scholar
  34. 34.
    Scharn, D., Wenschuh, H., Reineke, U., Schneider-Mergener, J., and Germeroth, L. (2000) Spatially addressed synthesis of amino- and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes. J. Comb. Chem. 2, 361–369.PubMedCrossRefGoogle Scholar
  35. 35.
    Rau, H. K., DeJonge, N., and Haehnel, W. (2000) Combinatorial synthesis of four-helix bundle hemoproteins for tuning of cofactor properties. Angew. Chem. Int. Ed. 39, 250–253.CrossRefGoogle Scholar
  36. 36.
    Kamradt, T. and Volkmer-Engert, R. (2004) Cross-reactivity of T lymphocytes in infection and autoimmunity. Mol. Divers. 8, 271–280.PubMedCrossRefGoogle Scholar
  37. 37.
    Zander, N. (2004) New planar substrates for the in situ synthesis of peptide arrays. Mol. Divers. 8, 189–195.PubMedCrossRefGoogle Scholar
  38. 38.
    Bhargava, S., Licha, K., Knaute, T., Ebert, B., Becker, A., Grötzinger, C., Hessenius, C., Wiedemann, B., Schneider-Mergener, J., and Volkmer-Engert, R. (2002) A complete substitutional analysis of VIP for better tumor imaging properties. J. Mol. Recog. 15, 145–153.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dirk F. H. Winkler
    • 1
  • Kai Hilpert
    • 2
  1. 1.Brain Research Centre, University of British ColumbiaVancouverCanada
  2. 2.Institute of Biological Interfaces – IBG 2, KIT (Karlsruhe Institute of Technology), Forschungszentrum KarlsruheEggenstein-LeopoldshafenGermany

Personalised recommendations