Solid-State NMR Investigations of Membrane-Associated Antimicrobial Peptides

  • Christopher Aisenbrey
  • Philippe Bertani
  • Burkhard Bechinger
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 618)

Abstract

Solid-state NMR and other biophysical investigations have revealed many mechanistic details about the interactions of antimicrobial peptides with membranes. These studies have shaped our view on how these peptides cause the killing of bacteria, fungi, or tumour cells and how they permeabilize model membranes. As a result, we better understand the biological activities of these peptides and we are now able to design new and better sequences. Here we present some of the tools that have allowed these solid-state NMR investigations, including detailed protocols on how to reconstitute the peptides into oriented or non-oriented membranes as well as simple set-up procedures for 2H as well as proton-decoupled 31P or 15N solid-state NMR measurements. Static and magic angle spinning experiments are described. Where adequate, the special requirements for or limitations of some of the measurements are discussed. Solid-state NMR spectra of both lipids and peptides have been recorded, and through the ensemble of measurements a detailed picture of these complex peptide–lipid supramolecular systems has finally emerged.

Key words

Membrane reconstitution oriented bilayer helix topology amphipathic peptide surface alignment transmembrane orientation membrane protein structure peptide–lipid interactions pore formation channel magic angle spinning 

Notes

Acknowledgments

We are thankful to Vaincre la Mucoviscidose (TG0101), the Association pour la Recherche sur le Cancer (No. 3100), the Agence Nationale pour la Recherche, the RMN Grand-Est Network of the Ministry of Recherche, the International Center for Frontier Research in Chemistry, and the European Union (MCRTN 33439-Biocontrol) for supporting our projects. The Institute for Supramolecular Chemistry of the University of Strasbourg (ISIS) is acknowledged for hosting the laboratory.

References

  1. 1.
    Bechinger, B. (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy. Biochim. Biophys. Acta 1462, 157–183.PubMedCrossRefGoogle Scholar
  2. 2.
    Bechinger, B., Kim, Y., Chirlian, L. E., Gesell, J., Neumann, J.-M., Montal, M., Tomich, J., Zasloff, M., and Opella, S. J. (1991) Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy. J. Biomol. NMR 1, 167–173.PubMedCrossRefGoogle Scholar
  3. 3.
    Bechinger, B. (1996) Towards membrane protein design: pH dependent topology of histidine-containing polypeptides. J. Mol. Biol. 263, 768–775.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogt, T. C. B. and Bechinger, B. (1999) The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers: the effects of charges and pH. J. Biol. Chem. 274, 29115–29121.PubMedCrossRefGoogle Scholar
  5. 5.
    Bechinger, B. (2009) Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Curr. Opin. Colloid Interface Sci. 14, 349–355.CrossRefGoogle Scholar
  6. 6.
    Mason, A. J., Martinez, A., Glaubitz, C., Danos, O., Kichler, A., and Bechinger, B. (2006) The antibiotic and DNA-transfecting peptide LAH4 selectively associates with, and disorders, anionic lipids in mixed membranes. FASEB J. 20, 320–322.PubMedGoogle Scholar
  7. 7.
    Bechinger, B., Zasloff, M., and Opella, S. J. (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid-state NMR spectroscopy. Protein Sci. 2, 2077–2084.PubMedCrossRefGoogle Scholar
  8. 8.
    Bechinger, B., Zasloff, M., and Opella, S. J. (1998) Structure and dynamics of the antibiotic peptide PGLa in membranes by multidimensional solution and solid-state NMR spectroscopy. Biophys. J. 74, 981–987.PubMedCrossRefGoogle Scholar
  9. 9.
    Bechinger, B. and Sizun, C. (2003) Alignment and structural analysis of membrane polypeptides by 15 N and 31P solid-state NMR spectroscopy. Concepts Magn. Reson. A 18A, 130–145.CrossRefGoogle Scholar
  10. 10.
    Aisenbrey, C. and Bechinger, B. (2004) Investigations of peptide rotational diffusion in aligned membranes by 2H and 15N solid-state NMR spectroscopy. J. Am. Chem. Soc. 126, 16676–16683.PubMedCrossRefGoogle Scholar
  11. 11.
    Cullis, P. R. and De Kruijff, B. (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399–420.PubMedCrossRefGoogle Scholar
  12. 12.
    Bechinger, B. (2005) Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR study. Biochim. Biophys. Acta 1712, 101–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Cady, S. D., Goodman, C., Tatko, C. D., DeGrado, W. F., and Hong, M. (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, and 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J. Am. Chem. Soc. 129, 5719–5729.PubMedCrossRefGoogle Scholar
  14. 14.
    Prongidi-Fix, L., Bertani, P., and Bechinger, B. (2007) The membrane alignment of helical peptides from non-oriented 15N chemical shift solid-state NMR spectroscopy. J. Am. Chem. Soc. 129, 8430–8431.PubMedCrossRefGoogle Scholar
  15. 15.
    Salnikov, E. S., Mason, A. J., and Bechinger, B. (2009) Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie 91, 734–743.PubMedCrossRefGoogle Scholar
  16. 16.
    Aisenbrey, C. and Bechinger, B. (2004) Tilt and rotational pitch angles of membrane-inserted polypeptides from combined 15 N and 2H solid-state NMR spectroscopy. Biochemistry 43, 10502–10512.PubMedCrossRefGoogle Scholar
  17. 17.
    Aisenbrey, C., Sizun, C., Koch, J., Herget, M., Abele, U., Bechinger, B., and Tampe, R. (2006) Structure and dynamics of membrane-associated ICP47, a viral inhibitor of the MHC I antigen-processing machinery. J. Biol. Chem. 281, 30365–30372.PubMedCrossRefGoogle Scholar
  18. 18.
    Bechinger, B., Bertani, P., Werten, S., Mendonca de Moraes, C., Aisenbrey, C., Mason, A. J., Perrone, B., Prudhon, M., Sudheendra, U. S., and Vidovic, V. (2009) The structural and topological analysis of membrane polypeptides by oriented solid-state NMR spectroscopy: sample preparation and theory. In Membrane-Active Peptides: Methods and Results on Structure and Function. M. Castanho (Ed.), in press. La Jolla: International University Line.Google Scholar
  19. 19.
    Vidovic, V., Prongidi-Fix, L., Bechinger, B., and Werten, S. (2009) A versatile and highly efficient method for the production of antimicrobial peptides in Escherichia coli. J. Pept. Sci. 15, 278–284.PubMedCrossRefGoogle Scholar
  20. 20.
    Salnikov, E. S., Friedrich, H., Li, X., Bertani, P., Hertweck, C., Reissmann, S., O‘Neil, J. D. J., Rapp, J., and Bechinger, B. (2009) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethcin by 15N and 31P solid-state NMR spectroscopy. Biophys. J. 96, 86–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Bechinger, B. and Opella, S. J. (1991) Flat-coil probe for NMR spectroscopy of oriented membrane samples. J. Magn. Reson. 95, 585–588.Google Scholar
  22. 22.
    Nielsen, N. C., Daugaard, P., Langer, V., Thomsen, J. K., Nielsen, S., Sorensen, O. W., and Jakobsen, H. J. (1995) A flat-coil NMR probe with hydration control of oriented phospholipid-bilayer samples. J. Biomol. NMR 5, 311–314.PubMedCrossRefGoogle Scholar
  23. 23.
    Andrushchenko, V. V., Vogel, H. J., and Prenner, E. J. (2007) Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides. J. Pept. Sci. 13, 37–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Berger, S. and Braun, S. (2004) 200 and More Basic NMR Experiments: A Practical Course. Weinheim: Wiley-VCH Verlag.Google Scholar
  25. 25.
    Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I., and Higgs, T. P. (1976) Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42, 390–394.CrossRefGoogle Scholar
  26. 26.
    Rance, M. and Byrd, R. A. (1983) Obtaining high-fidelity spin-1/2 powder spectra in anisotropic media: phase-cycled Hahn echo spectroscopy. J. Magn. Res. 52, 221–240.Google Scholar
  27. 27.
    Ottiger, M. and Bax, A. (1998) Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J. Biomol. NMR 12, 361–372.PubMedCrossRefGoogle Scholar
  28. 28.
    Salnikov, E. S., Friedrich, H., Li, X., Bertani, P., Reissmann, S., Hertweck, C., O‘Neil, J. D., Raap, J., and Bechinger, B. (2009) Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys. J. 96, 86–100.PubMedCrossRefGoogle Scholar
  29. 29.
    O‘Brian, F. E. M. (1948) The control of humidity by saturated salt solutions. J. Sci. Instr. 25, 73–76.CrossRefGoogle Scholar
  30. 30.
    Sani, M. A., Loudet, C., Grobner, G., and Dufourc, E. J. (2007) Pro-apoptotic bax-alpha1 synthesis and evidence for beta-sheet to alpha-helix conformational change as triggered by negatively charged lipid membranes. J. Pept. Sci. 13, 100–106.PubMedCrossRefGoogle Scholar
  31. 31.
    Roux, S., Zekri, E., Rousseau, B., Paternostre, M., Cintrat, J. C., and Fay, N. (2008) Elimination and exchange of trifluoroacetate counter-ion from cationic peptides: a critical evaluation of different approaches. J. Pept. Sci. 14, 354–359.PubMedCrossRefGoogle Scholar
  32. 32.
    Bechinger, B., Ruysschaert, J. M., and Goormaghtigh, E. (1999) Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys. J. 76, 552–563.PubMedCrossRefGoogle Scholar
  33. 33.
    Hallock, K. J., Henzler, W. K., Lee, D. K., and Ramamoorthy, A. (2002) An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys. J. 82, 2499–2503.PubMedCrossRefGoogle Scholar
  34. 34.
    Glaubitz, C. and Watts, A. (1998) Magic angle oriented sample spinning (MAOSS) – A new approach toward biomembrane studies. J. Magn. Reson. 130, 305–316.PubMedCrossRefGoogle Scholar
  35. 35.
    Sizun, C. and Bechinger, B. (2002) Bilayer samples for fast or slow magic angle oriented sample spinning solid-state NMR spectroscopy. J. Am. Chem. Soc. 124, 1146–1147.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christopher Aisenbrey
    • 1
  • Philippe Bertani
    • 1
  • Burkhard Bechinger
    • 1
  1. 1.Institut de Chimie, CNRSUniversité de StrasbourgStrasbourgFrance

Personalised recommendations