Skip to main content

Comparing Bacterial Membrane Interactions of Antimicrobial Peptides and Their Mimics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 618))

Abstract

Interactions with bacterial membranes are integral to the mechanisms of action of all antimicrobial peptides (AMPs), regardless of their final cellular targets. Here, we describe in detail two biophysical techniques that can be used to measure the membrane activities of AMPs and antimicrobial peptidomimetics: (1) a calcein leakage assay to investigate interactions between AMPs/peptidomimetics with large unilamellar vesicles and (2) a potential-sensitive dye-based depolarization assay to investigate interactions with the membranes of live bacteria. By comparing the membrane interactions of AMPs and their mimics, these techniques can provide insights into their extent of mimicry and their antimicrobial mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seebach, D., Overhand, M., Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U., and Widmer, H. (1996) β-peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 79, 913–941.

    Article  CAS  Google Scholar 

  2. Porter, E. A., Weisblum, B., and Gellman, S. H. (2002) Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides. J. Am. Chem. Soc. 124, 7324–7330.

    Article  PubMed  CAS  Google Scholar 

  3. Hamper, B. C., Kolodziej, S. A., Scates, A. M., Smith, R. G., and Cortez, E. (1998) Solid phase synthesis of β-peptoids: N-substituted β-aminopropionic acid oligomers. J. Org. Chem. 63, 708–718.

    Article  PubMed  CAS  Google Scholar 

  4. Epand, R. F., Schmitt, M. A., Gellman, S. H., Sen, A., Auger, M., Hughes, D. W., and Epand, R. M. (2005) Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids. Mol. Membr. Biol. 22, 457–469.

    Article  PubMed  CAS  Google Scholar 

  5. Violette, A., Averlant-Petit, M. C., Semetey, V., Hemmerlin, C., Casimir, R., Graff, R., Marraud, M., Briand, J.-P., Rognan, D., and Guichard, G. (2005) N,N’-linked oligoureas as foldamers: chain length requirements for helix formation in protic solvent investigated by circular dichroism, NMR spectroscopy, and molecular dynamics. J. Am. Chem. Soc. 127, 2156–2164.

    Article  PubMed  CAS  Google Scholar 

  6. Arnt, L., and Tew, G. N. (2002) New poly(phenyleneethynylene)s with cationic, facially amphipathic structures. J. Am. Chem. Soc. 124, 7664–7665.

    Article  PubMed  CAS  Google Scholar 

  7. Patch, J. A., and Barron, A. E. (2003) Helical peptoid mimics of magainin-2 amide. J. Am. Chem. Soc. 125, 12092–12093.

    Article  PubMed  CAS  Google Scholar 

  8. Seurynck, S. L., Patch, J. A., and Barron, A. E. (2005) Simple, helical peptoid analogs of lung surfactant protein B. Chem. Biol. 12, 77–88.

    Article  PubMed  CAS  Google Scholar 

  9. Statz, A. R., Meagher, R. J., Barron, A. E., and Messersmith, P. B. (2005) New peptidomimetic polymers for antifouling surfaces. J. Am. Chem. Soc. 127, 7972–7973.

    Article  PubMed  CAS  Google Scholar 

  10. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238–250.

    Article  PubMed  CAS  Google Scholar 

  11. Hale, J. D. F., and Hancock, R. E. W. (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther. 5, 951–959.

    Article  PubMed  CAS  Google Scholar 

  12. Jelokhani-Niaraki, M., Prenner, E. J., Kay, C. M., McElhaney, R. N., and Hodges, R. S. (2002) Conformation and interaction of the cyclic cationic antimicrobial peptides in lipid bilayers. J. Pept. Res. 60, 23–36.

    Article  PubMed  CAS  Google Scholar 

  13. Jin, Y., Mozsolits, H., Hammer, J., Zmuda, E., Zhu, F., Zhang, Y., Aguilar, M. I., and Blazyk, J. (2003) Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Biochemistry 42, 9395–9405.

    Article  PubMed  CAS  Google Scholar 

  14. Matsuzaki, K., Murase, O., Tokuda, H., Funakoshi, S., Fujii, N., and Miyajima, K. (1994) Orientational and aggregational states of magainin 2 in phospholipid bilayers. Biochemistry 33, 3342–3349.

    Article  PubMed  CAS  Google Scholar 

  15. Raghuraman, H., and Chattopadhyay, A. (2004) Interaction of melittin with membrane cholesterol: a fluorescence approach. Biophys. J. 87, 2419–2432.

    Article  PubMed  CAS  Google Scholar 

  16. Tachi, T., Epand, R. F., Epand, R. M., and Matsuzaki, K. (2002) Position-dependent hydrophobicity of the antimicrobial magainin peptide affects the mode of peptide-lipid interactions and selective toxicity. Biochemistry 41, 10723–10731.

    Article  PubMed  CAS  Google Scholar 

  17. Vogt, T. C. B., and Bechinger, B. (1999) The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. J. Biol. Chem. 274, 29115–29121.

    Article  PubMed  CAS  Google Scholar 

  18. Friedrich, C. L., Moyles, D., Beveridge, T. J., and Hancock, R. E. W. (2000) Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria. Antimicrob. Agents Chemother. 44, 2086–2092.

    Article  PubMed  CAS  Google Scholar 

  19. Friedrich, C. L., Rozek, A., Patrzykat, A., and Hancock, R. E. W. (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. J. Biol. Chem. 276, 24015–24022.

    Article  PubMed  CAS  Google Scholar 

  20. Sal-Man, N., Oren, Z., and Shai, Y. (2002) Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry 41, 11921–11930.

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki, H., Wang, Z.-Y., Yamakoshi, M., Kobayashi, M., and Nozawa, T. (2003) Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes. Anal. Sci. 19, 1239–1242.

    Article  PubMed  CAS  Google Scholar 

  22. Toyomizu, M., Okamoto, K., Akiba, Y., Nakatsu, T., and Konishi, T. (2002) Anacardic acid-mediated changes in membrane potential and pH gradient across liposomal membranes. Biochim. Biophys. Acta 1558, 54–62.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, M., Maier, E., Benz, R., and Hancock, R. E. W. (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38, 7235–7242.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang, L., Dhillon, P., Yan, H., Farmer, S., and Hancock, R. E. W. (2000) Interactions of bacterial cationic peptide antibiotics with outer and cytoplasmic membranes of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.44, 3317–3321.

    Article  CAS  Google Scholar 

  25. Zhang, L., Scott, M. G., Yan, H., Mayer, L. D., and Hancock, R. E. W. (2000) Interaction of polyphemusin I and structural analogs with bacterial membranes, lipopolysaccharide, and lipid monolayers. Biochemistry 39, 14504–14514.

    Article  PubMed  CAS  Google Scholar 

  26. Zhu, W. L., Song, Y. M., Park, Y., Park, K. H., Yang, S.-T., Kim, J. I., Park, I.-S., Hahm, K. S., and Shin, S. Y. (2007) Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim. Biophys. Acta 1768, 1506–1517.

    Article  PubMed  CAS  Google Scholar 

  27. Sainz, B., Jr., Rausch, J. M., Gallaher, W. R., Garry, R. F., and Wimley, W. C. (2005) Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein. J. Virol. 79, 7195–7206.

    Article  PubMed  CAS  Google Scholar 

  28. Rausch, J. M., and Wimley, W. C. (2001) A high-throughput screen for identifying transmembrane pore-forming peptides. Anal. Biochem. 293, 258–263.

    Article  PubMed  CAS  Google Scholar 

  29. Waggoner, A. (1976) Optical probes of membrane potential. J. Membr. Biol. 27, 317–334.

    Article  PubMed  CAS  Google Scholar 

  30. Letellier, L., and Shechter, E. (1979) Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles. Eur. J. Biochem. 102, 441–447.

    Article  PubMed  CAS  Google Scholar 

  31. Ozkan, P., and Mutharasan, R. (2002) A rapid method for measuring the intracellular pH using BCECF-AM. Biochim. Biophys. Acta 1572, 143–148.

    Article  PubMed  CAS  Google Scholar 

  32. Casadio, R., Di Bernardo, S., Fariselli, P., and Melandri, B. A. (1995) Characterization of 9-aminoacridine interaction with chromatophore membranes and modelling of the probe response to artificially induced transmembrane ΔpH values. Biochim. Biophys. Acta 1237, 23–30.

    Article  PubMed  Google Scholar 

  33. Apell, H.-J., and Bersch, B. (1987) Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim. Biophys. Acta 903, 480–494.

    Article  PubMed  CAS  Google Scholar 

  34. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002) Molecular biology of the cell. Garland Science: New York.

    Google Scholar 

  35. Noskov, S. Y., and Roux, B. (2006) Ion selectivity in potassium channels. Biophys. Chem. 124, 279–291.

    Article  PubMed  CAS  Google Scholar 

  36. Seelig, J. (1997) Titration calorimetry of lipid-peptide interactions. Biochim. Biophys. Acta 1331, 103–116.

    Article  PubMed  CAS  Google Scholar 

  37. Wieprecht, T., Apostolov, O., and Seelig, J. (2000) Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys. Chem. 85, 187–198.

    Article  PubMed  CAS  Google Scholar 

  38. Wieprecht, T., Beyermann, M., and Seelig, J. (1999) Binding of the antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure. Biochemistry 38, 10377–10387.

    Article  PubMed  CAS  Google Scholar 

  39. Wieprecht, T., and Seelig, J. (2002) Isothermal titration calorimetry for studying interactions between peptides and lipid membranes. In Peptide-Lipids Interactions. S. A. Simon and T. J. McInotosh (Eds.), Current Topics in Membranes, Vol. 52, pp. 31–56. USA: Elsevier Science.

    Chapter  Google Scholar 

  40. Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R. (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65.

    Article  PubMed  CAS  Google Scholar 

  41. Bartlett, G. R. (1959) Phosphorus assay in column chromatography. J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  42. Dodge, J. T., and Phillips, G. B. (1967) Composition of phospholipids and of phospholipid fatty acids and aldehydes in human red cells. J. Lipid Res. 8, 667–675.

    PubMed  CAS  Google Scholar 

  43. Kruijff, B. D., Killian, J. A., Rietveld, A. G., and Kusters, R. (1997) Phospholipid structure and Escherichia coli membranes. In Lipid Polymorphism and Membrane Properties. R. M. Epand (Ed.), Current Topics in Membranes and Transport, Vol. 44, pp. 477–515. London:Academic Press.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Robert MacDonald, Dr. Joshua Rausch, Dr. Jiwon Seo, and Ms. Meera Rao for their assistance in the development of these protocols. This work was supported by a Department of Homeland Security Fellowship and NIH Grants 1 R01 HL67984 and 1 R01 AI072666.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chongsiriwatana, N.P., Barron, A.E. (2010). Comparing Bacterial Membrane Interactions of Antimicrobial Peptides and Their Mimics. In: Giuliani, A., Rinaldi, A. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 618. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-594-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-594-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-593-4

  • Online ISBN: 978-1-60761-594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics