Advertisement

A Potential Therapeutic for Pandemic Influenza Using RNA Interference

  • Shaguna Seth
  • Michael V. Templin
  • Gregory Severson
  • Oleksandr Baturevych
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 623)

Abstract

RNA interference (RNAi) involves sequence-specific downregulation of target genes, leading to gene silencing in vitro and in vivo. Synthetic small interfering RNAs (siRNAs), formulated with appropriate delivery agents, can serve as effective tools for RNAi-based therapeutics. The potential of siRNA to provide antiviral activity has been studied extensively in many respiratory viruses, including influenza virus, wherein specific siRNAs target highly-conserved regions of influenza viral genome, leading to potent inhibition of viral RNA replication. Despite various delivery strategies, such as polycations and liposomes that have been employed to formulate siRNAs, effective delivery modalities are still needed. Although current strategies can provide significant biodistribution and delivery into lungs allowing gene silencing, complete protection and prolonged survival rates against multiple strains of influenza virus still remains a key challenge. Here, we describe methods and procedures pertaining to screening and selection of highly effective influenza-specific siRNAs in cell culture, in mice, and in the ferret model. This will be potentially useful to evaluate RNAi as a therapeutic modality for future clinical application.

Key words

RNA interference Small interfering RNA (siRNA) In vitro and in vivo screening Liposomes, Dual luciferase assay TCID50 and Plaque assay Influenza virus infection Intranasal dosing Cytokine assay 

References

  1. 1.
    Zeitlin, G. A., and Maslow, M. J. (2006) Avian influenza. Curr. Allergy Asthma Rep. 6, 163–170.CrossRefPubMedGoogle Scholar
  2. 2.
    McSwiggen, J. A., and Seth, S. (2008) A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expert Opin. Biol. Ther. 8, 299–313.CrossRefPubMedGoogle Scholar
  3. 3.
    Hannon, G. J., and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378.CrossRefPubMedGoogle Scholar
  4. 4.
    Mello, C. C., and Conte, D. (2004) Revealing the world of RNA interference. Nature 431, 338–342.CrossRefPubMedGoogle Scholar
  5. 5.
    Meister, G., and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.CrossRefPubMedGoogle Scholar
  6. 6.
    Filipowicz, W., Jaskiewicz, L., Kolb, F. A., and Pillai, R. S. (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–341.CrossRefPubMedGoogle Scholar
  7. 7.
    Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N., and Chen, J. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. U. S. A. 100, 2718–2723.CrossRefPubMedGoogle Scholar
  8. 8.
    Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H. N., and Chen, J. (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 8676–8681.CrossRefPubMedGoogle Scholar
  9. 9.
    Ge, Q., Eisen, H. N., and Chen, J. (2004) Use of siRNAs to prevent and treat influenza virus infection. Virus Res. 102, 37–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Tompkins, S. M., Lo, C.-Y., Tumpey, T. M., and Epstein, S. L. (2004) Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U. S. A. 101, 8682–8686.CrossRefPubMedGoogle Scholar
  11. 11.
    Thomas, M., Ge, Q., Lu, J. J., Klibanov, A. M., and Chen, J. (2005) Polycation-mediated delivery of siRNAs for prophylaxis and treatment of influenza virus infection. Expert Opin. Biol. Ther. 5, 495–505.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou, H., Jin, M., Yu, Z., Xu, X., Peng, Y., Wu, H., et al. (2007) Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res. 76, 186–193.CrossRefPubMedGoogle Scholar
  13. 13.
    Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W. S., and Khvorova, A. (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988–993.CrossRefPubMedGoogle Scholar
  14. 14.
    Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., and MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462.CrossRefPubMedGoogle Scholar
  15. 15.
    Judge, A., and MacLachlan, I. (2008) Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124.CrossRefPubMedGoogle Scholar
  16. 16.
    Chiu, Y. L., and Rana, T. M. (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048.CrossRefPubMedGoogle Scholar
  17. 17.
    Czauderna, F., Fechtner, M., Dames, S., Aygun, H., Klippel, A., Pronk, G. J., Giese, K., and Kaufmann, J. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.CrossRefPubMedGoogle Scholar
  18. 18.
    Amarzguioui, M., Holen, T., Babaie, E., and Prydz, H. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595.CrossRefPubMedGoogle Scholar
  19. 19.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. [Erratum to document cited in CA139:376163]. Cell (Cambridge, MA, United States) 115, 505.Google Scholar
  20. 20.
    Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.CrossRefPubMedGoogle Scholar
  21. 21.
    Ladunga, I. (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res. 35, 433–440.CrossRefPubMedGoogle Scholar
  22. 22.
    Katoh, T., and Suzuki, T. (2007) Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res. 35, e27.CrossRefPubMedGoogle Scholar
  23. 23.
    Pei, Y., and Tuschl, T. (2006) On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676.CrossRefPubMedGoogle Scholar
  24. 24.
    Ui-Tei, K., Naito, Y., and Saigo, K. (2006) Essential Notes Regarding the Design of Functional siRNAs for Efficient Mammalian RNAi. J.Biomed. Biotechnol. 2006, 65052.PubMedGoogle Scholar
  25. 25.
    Reed, L. J., and Muench, H. (1938) A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.Google Scholar
  26. 26.
    Behlke, M. A. (2006) Progress towards in Vivo Use of siRNAs. Mol. Ther. 13, 644–670.CrossRefPubMedGoogle Scholar
  27. 27.
    Li, W., and Szoka, F. C., Jr. (2007) Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharm. Res. 24, 438–449.CrossRefPubMedGoogle Scholar
  28. 28.
    Aigner, A. (2006) Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J. Biomed. Biotechnol. 2006, 71659.PubMedGoogle Scholar
  29. 29.
    Ren, T., Song, Y. K., Zhang, G., and Liu, D. (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther. 7, 764–768.CrossRefPubMedGoogle Scholar
  30. 30.
    Spagnou, S., Miller, A. D., and Keller, M. (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry (Mosc.) 43, 13348–13356.CrossRefGoogle Scholar
  31. 31.
    Templeton, N. S., Lasic, D. D., Frederik, P. M., Strey, H. H., Roberts, D. D., and Pavlakis, G. N. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15, 647–652.CrossRefPubMedGoogle Scholar
  32. 32.
    Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U. S. A. 102, 5679–5684.CrossRefPubMedGoogle Scholar
  33. 33.
    Kichler, A., Chillon, M., Leborgne, C., Danos, O., and Frisch, B. (2002) Intranasal gene delivery with a polyethylenimine-PEG conjugate. J. Control Release 81, 379–388.CrossRefPubMedGoogle Scholar
  34. 34.
    Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. O., et al. (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.CrossRefPubMedGoogle Scholar
  35. 35.
    Reuman, P. D., Keely, S., and Schiff, G. M. (1989) Assessment of signs of influenza illness in the ferret model. J. Virol. Methods 24, 27–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shaguna Seth
    • 1
  • Michael V. Templin
    • 1
  • Gregory Severson
    • 1
  • Oleksandr Baturevych
    • 1
  1. 1.Department of Pharmacology, Toxicology and VirologyMDRNA Inc.BothellUSA

Personalised recommendations