Skip to main content

A Potential Therapeutic for Pandemic Influenza Using RNA Interference

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 623))

Abstract

RNA interference (RNAi) involves sequence-specific downregulation of target genes, leading to gene silencing in vitro and in vivo. Synthetic small interfering RNAs (siRNAs), formulated with appropriate delivery agents, can serve as effective tools for RNAi-based therapeutics. The potential of siRNA to provide antiviral activity has been studied extensively in many respiratory viruses, including influenza virus, wherein specific siRNAs target highly-conserved regions of influenza viral genome, leading to potent inhibition of viral RNA replication. Despite various delivery strategies, such as polycations and liposomes that have been employed to formulate siRNAs, effective delivery modalities are still needed. Although current strategies can provide significant biodistribution and delivery into lungs allowing gene silencing, complete protection and prolonged survival rates against multiple strains of influenza virus still remains a key challenge. Here, we describe methods and procedures pertaining to screening and selection of highly effective influenza-specific siRNAs in cell culture, in mice, and in the ferret model. This will be potentially useful to evaluate RNAi as a therapeutic modality for future clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zeitlin, G. A., and Maslow, M. J. (2006) Avian influenza. Curr. Allergy Asthma Rep. 6, 163–170.

    Article  CAS  PubMed  Google Scholar 

  2. McSwiggen, J. A., and Seth, S. (2008) A potential treatment for pandemic influenza using siRNAs targeting conserved regions of influenza A. Expert Opin. Biol. Ther. 8, 299–313.

    Article  CAS  PubMed  Google Scholar 

  3. Hannon, G. J., and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378.

    Article  CAS  PubMed  Google Scholar 

  4. Mello, C. C., and Conte, D. (2004) Revealing the world of RNA interference. Nature 431, 338–342.

    Article  CAS  PubMed  Google Scholar 

  5. Meister, G., and Tuschl, T. (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.

    Article  CAS  PubMed  Google Scholar 

  6. Filipowicz, W., Jaskiewicz, L., Kolb, F. A., and Pillai, R. S. (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr. Opin. Struct. Biol. 15, 331–341.

    Article  CAS  PubMed  Google Scholar 

  7. Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N., and Chen, J. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. U. S. A. 100, 2718–2723.

    Article  CAS  PubMed  Google Scholar 

  8. Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H. N., and Chen, J. (2004) Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. U. S. A. 101, 8676–8681.

    Article  CAS  PubMed  Google Scholar 

  9. Ge, Q., Eisen, H. N., and Chen, J. (2004) Use of siRNAs to prevent and treat influenza virus infection. Virus Res. 102, 37–42.

    Article  CAS  PubMed  Google Scholar 

  10. Tompkins, S. M., Lo, C.-Y., Tumpey, T. M., and Epstein, S. L. (2004) Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. U. S. A. 101, 8682–8686.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, M., Ge, Q., Lu, J. J., Klibanov, A. M., and Chen, J. (2005) Polycation-mediated delivery of siRNAs for prophylaxis and treatment of influenza virus infection. Expert Opin. Biol. Ther. 5, 495–505.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, H., Jin, M., Yu, Z., Xu, X., Peng, Y., Wu, H., et al. (2007) Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res. 76, 186–193.

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W. S., and Khvorova, A. (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988–993.

    Article  CAS  PubMed  Google Scholar 

  14. Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., and MacLachlan, I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462.

    Article  CAS  PubMed  Google Scholar 

  15. Judge, A., and MacLachlan, I. (2008) Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19, 111–124.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu, Y. L., and Rana, T. M. (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  17. Czauderna, F., Fechtner, M., Dames, S., Aygun, H., Klippel, A., Pronk, G. J., Giese, K., and Kaufmann, J. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716.

    Article  CAS  PubMed  Google Scholar 

  18. Amarzguioui, M., Holen, T., Babaie, E., and Prydz, H. (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595.

    Article  CAS  PubMed  Google Scholar 

  19. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. [Erratum to document cited in CA139:376163]. Cell (Cambridge, MA, United States) 115, 505.

    Google Scholar 

  20. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S., and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330.

    Article  CAS  PubMed  Google Scholar 

  21. Ladunga, I. (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res. 35, 433–440.

    Article  CAS  PubMed  Google Scholar 

  22. Katoh, T., and Suzuki, T. (2007) Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucleic Acids Res. 35, e27.

    Article  PubMed  Google Scholar 

  23. Pei, Y., and Tuschl, T. (2006) On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676.

    Article  CAS  PubMed  Google Scholar 

  24. Ui-Tei, K., Naito, Y., and Saigo, K. (2006) Essential Notes Regarding the Design of Functional siRNAs for Efficient Mammalian RNAi. J.Biomed. Biotechnol. 2006, 65052.

    PubMed  Google Scholar 

  25. Reed, L. J., and Muench, H. (1938) A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27, 493–497.

    Google Scholar 

  26. Behlke, M. A. (2006) Progress towards in Vivo Use of siRNAs. Mol. Ther. 13, 644–670.

    Article  CAS  PubMed  Google Scholar 

  27. Li, W., and Szoka, F. C., Jr. (2007) Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharm. Res. 24, 438–449.

    Article  PubMed  Google Scholar 

  28. Aigner, A. (2006) Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo. J. Biomed. Biotechnol. 2006, 71659.

    PubMed  Google Scholar 

  29. Ren, T., Song, Y. K., Zhang, G., and Liu, D. (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther. 7, 764–768.

    Article  CAS  PubMed  Google Scholar 

  30. Spagnou, S., Miller, A. D., and Keller, M. (2004) Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA. Biochemistry (Mosc.) 43, 13348–13356.

    Article  CAS  Google Scholar 

  31. Templeton, N. S., Lasic, D. D., Frederik, P. M., Strey, H. H., Roberts, D. D., and Pavlakis, G. N. (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15, 647–652.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas, M., Lu, J. J., Ge, Q., Zhang, C., Chen, J., and Klibanov, A. M. (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc. Natl. Acad. Sci. U. S. A. 102, 5679–5684.

    Article  CAS  PubMed  Google Scholar 

  33. Kichler, A., Chillon, M., Leborgne, C., Danos, O., and Frisch, B. (2002) Intranasal gene delivery with a polyethylenimine-PEG conjugate. J. Control Release 81, 379–388.

    Article  CAS  PubMed  Google Scholar 

  34. Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. O., et al. (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484.

    Article  CAS  PubMed  Google Scholar 

  35. Reuman, P. D., Keely, S., and Schiff, G. M. (1989) Assessment of signs of influenza illness in the ferret model. J. Virol. Methods 24, 27–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaguna Seth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seth, S., Templin, M.V., Severson, G., Baturevych, O. (2010). A Potential Therapeutic for Pandemic Influenza Using RNA Interference. In: Min, WP., Ichim, T. (eds) RNA Interference. Methods in Molecular Biology, vol 623. Humana Press. https://doi.org/10.1007/978-1-60761-588-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-588-0_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-587-3

  • Online ISBN: 978-1-60761-588-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics