Advertisement

Chemical Synthesis of 2′-O-Alkylated siRNAs

  • Joachim W. Engels
  • Dalibor Odadzic
  • Romualdas Smicius
  • Jens Haas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 623)

Abstract

Chemical synthesis has been a major endeavor to create active siRNAs. The downregulation of mRNA by 21-mer double-stranded siRNAs can be improved by using modified nucleotides, especially 2′-O-alkylated ones. Besides the commercially available 2¢-O-methyl ribosides, 2′-alkyl groups bearing positive charges are especially promising candidates. We have shown that in a proper formulation they are superior to unmodified siRNAs. This may be due to enhanced stability and most probably to a better uptake into the cells.

Key words

siRNA High pressure liquid chromatography Mass spectrometry Alkylation 

Notes

Acknowledgments

The authors would like to thank S. Bernhardt and H. Brill for technical assistance and the EU Right project (LSHB-CT-2004-005476) for financial support.

References

  1. 1.
    Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.CrossRefPubMedGoogle Scholar
  2. 2.
    Fire, A. Z. (2007) Gene silencing by double-stranded RNA (Nobel lecture). Angew. Chem. Int. Ed. 46, 6966–6984.CrossRefGoogle Scholar
  3. 3.
    Mello, C. C. (2007) Return to the RNAi world: rethinking gene expression and evolution (Nobel lecture). Angew. Chem., Int. Ed. 46, 6985–6994.CrossRefGoogle Scholar
  4. 4.
    Dorsett, Y. and Tuschl, T. (2004) siRNAs: applications in functional genomics and potentials as therapeutics. Nat. Rev. Drug. Discov. 3, 318–329.CrossRefPubMedGoogle Scholar
  5. 5.
    Bumcrot, D., Manoharan, M., Koteliansky, V. and Sah, W. Y. D. (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 12, 711.CrossRefGoogle Scholar
  6. 6.
    Behlke, M. A. (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–320.CrossRefPubMedGoogle Scholar
  7. 7.
    Allerson C. R., Sioufi, N., Jarres, R., Prakash T. P., Naik, N., Berdeja, A., et al. (2005) Fully 2´-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904.CrossRefPubMedGoogle Scholar
  8. 8.
    Koller, E., Propp, S., Murray, H., Lima, W., Bhat B., Prakash T.P., et al. (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res. 16, 4467–4476.CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Juranek, S., Li, H., Sheng, G., Tuschl, T. and Patel, D. J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209-213. doi:10.1038/nature07315.CrossRefPubMedGoogle Scholar
  10. 10.
    Griffey, R. H., Monia, B.P., Cummins, L. L., Freier, S., Greig, M. J., Guinosso, C. J., et al. (1996) 2´-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense Oligonucleotides. J. Med. Chem. 39, 5100–5109.CrossRefPubMedGoogle Scholar
  11. 11.
    Odadzic, D., Bramsen, J. B., Smicius, R., Bus, C., Kjems J., Engels, J. W. (2008) Synthesis of 2´-O-modified adenosine building blocks and application for RNA interference. Bioorg. Med. Ch em. 16 (1), 518–529.CrossRefPubMedGoogle Scholar
  12. 12.
    Smicius, R. and Engels, J. W. (2008) Preparation of zwitterionic ribonucleoside phosphoramidites for solid-phase siRNA synthesis. J. Org. Chem. 73, 4994–5002.CrossRefPubMedGoogle Scholar
  13. 13.
    Haas, J. and Engels, J. W. (2007) A novel entry to 2´-O-aminopropyl modified nucleosides amenable for further modifications. Tetrahedron Lett. 48 (50), 8891–8894.CrossRefGoogle Scholar
  14. 14.
    Bramsen, J. B., Laursen, M. B., Bus, C., Hansen, T. B., Langkjær, N., Babu, B. R., et al. (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37, 2867-2881. doi:10.1093/nar/gkp106CrossRefPubMedGoogle Scholar
  15. 15.
    Sproat, B. S. (1993) Synthesis of 2´-O-alkylribonucleotides, in Protocols for Oligonucleotides and Analogs, Methods in Molecular Biology (Agrawal, S., ed.), Humana Press, Totowa, New Jersey 20, pp. 115–141.CrossRefGoogle Scholar
  16. 16.
    Czauderna, F., Fechtner, M., Dames, S., Aygün, H., Klippel, A., Pronk G. J., Giese, K., Kaufmann, J. (2003) Structural variations and stabillising modifications of synthectic siRNAs in mammalian cells. Nucleic Acids Res. 11, 2705–2716.CrossRefGoogle Scholar
  17. 17.
    Kraynack, B. A. and Baker, B. F. (2006) Small interfering RNAs containing full 2 ´-O- methylribonucleotide-modified sense strands display Argonaute 2/elF2C2-dependent activity. RNA 12, 163–176.CrossRefPubMedGoogle Scholar
  18. 18.
    Freier, S. M. and Altmann K. H. (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes Nucleic Acids Res. 22, 4429–4443.CrossRefGoogle Scholar
  19. 19.
    Inoue, H., Hayase, Y., Imura, A., Iwai, S., Miura, K., Ohtsuka, E. (1987) Synthesis and hybridization studies on two complementary nona(2’-O-methyl)ribonucleotides. Nucleic Acids Res. 15, 6131–6148.CrossRefPubMedGoogle Scholar
  20. 20.
    Beaucage, S.L. and Iyer, R.P. (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48, 2223–2311.CrossRefGoogle Scholar
  21. 21.
    Caruthers, M. H. (1985) Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285.CrossRefPubMedGoogle Scholar
  22. 22.
    Bahr, U., Aygün H., and Karas, M. (2008) Detection and relative quantification of siRNA double strands by MALDI Mass Spectrometry. Anal. Chem. 16, 6280–6285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joachim W. Engels
    • 1
  • Dalibor Odadzic
    • 1
  • Romualdas Smicius
    • 2
  • Jens Haas
    • 3
  1. 1.Institute of Organic Chemistry and Chemical BiologyJ.W. Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Biotherapeutics and Bioinnovation CenterColey Pharmaceutical GmbH (a Pfizer Company)DüsseldorfGermany
  3. 3.BioNTech AG c/o Department of Internal Medicine III, Experimental and Translational OncologyJohannes Gutenberg UniversityMainzGermany

Personalised recommendations