Introduction to Epigenomics and Epigenome-Wide Analysis

  • Melissa J. Fazzari
  • John M. Greally
Part of the Methods in Molecular Biology book series (MIMB, volume 620)


Epigenetics is the study of heritable change other than those encoded in DNA sequence. Cytosine methylation of DNA at CpG dinucleotides is the most well-studied epigenetic phenomenon, although epigenetic changes also encompass non-DNA methylation mechanisms, such as covalent histone modifications, micro-RNA interactions, and chromatin remodeling complexes. Methylation changes, both global and gene specific, have been observed to be associated with disease, particularly in cancer.

This chapter begins with a general overview of epigenomics, and then focuses on understanding and analyzing genome-wide cytosine methylation data. There are many microarray-based techniques available to measure cytosine methylation across the genome, as well as gold-standard techniques based on sequencing bisulfite converted DNA, which is used to measure methylation in a smaller, more targeted set of loci. We have provided an overview of many of the current technologies – their advantages, limitations, and recent improvements. Regardless of which technology is used, the goal is to produce a set of methylation measurements that are highly consistent with true methylation levels of the corresponding set of CpG dinucleotides.

Identifying all loci with aberrant methylation or hypomethylation in disease, or in natural processes such as aging, requires the comparison of methylation levels across many samples. In such studies, the development of methylation-based diagnostic tools may be of interest, potentially to be used as early disease detection strategies based on a set of sentinel loci. In addition, the identification of loci with potentially reversible methylation events may result in new therapeutic options. Given the vast number of measurable sites, prioritization of candidate loci is an important and complex issue and rests on a foundation of appropriate statistical testing and summarization. Coupled with statistical estimates of importance, the genomic context of each locus measured may offer important information about the mechanisms by which epigenetic changes impact disease and allows us further refinement of candidate loci. We will conclude this chapter by identifying issues in building methylation-based models for prediction and potential directions of further statistical research in epigenetics.

Key words

Epigenomics methylation statistical epigenetics CpG islands quantile–quantile plots prioritization 


  1. 1.
    Martienssen, R.D., Zaratiegui, M., and Goto, D.B. (2005) RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe, Trends Genet 21(8), 450–456.PubMedCrossRefGoogle Scholar
  2. 2.
    Klose, R.J. and Bird, A.P. (2006) Genomic DNA methylation: the mark and its mediators, Trends Biochem Sci 2, 89–97.CrossRefGoogle Scholar
  3. 3.
    Jørgensen, H.F. and Bird, A. (2002) MeCP2 and other methyl-CpG binding proteins, Ment Retard Dev Disabil Res Rev 8(2), 87–93.PubMedCrossRefGoogle Scholar
  4. 4.
    Fazzari, M.J. and Greally, J.M. (2004) Epigenomics: Beyond CpG islands, Nat Rev Genet 5, 446–455.PubMedCrossRefGoogle Scholar
  5. 5.
    Issa, J.P. (2004) CpG island methylator phenotype in cancer, Nat Rev Cancer 4, 988–993.PubMedCrossRefGoogle Scholar
  6. 6.
    Vaissière, T., Sawan, C., and Herceg, Z. (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing, Mutat Res 659(1–2), 40–48.PubMedGoogle Scholar
  7. 7.
    Bell, A.C. and Felsenfeld, G. (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene, Nature 405(6785), 482–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Laird, P.W. (1997) Oncogenic mechanisms mediated by DNA methylation, Mol Med Today 3, 223–229.PubMedCrossRefGoogle Scholar
  9. 9.
    Ladd-Acosta, C.P., Sabunciyan, S., Yolken, R.H., Webster, M.J., Dinkins, T., Callinan, P.A., Fan, J.B., Potash, J.B., and Feinberg, A.P. (2007) DNA methylation signatures within the human brain, Am J Hum Genet 81(6), 1304–1315.PubMedCrossRefGoogle Scholar
  10. 10.
    Richardson, B.C. (2002) Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J Nutr 132, 2401S–2405S.Google Scholar
  11. 11.
    Richardson, B.C. (2003) Impact of aging on DNA methylation, Ageing Res Rev 2/3, 245–261.CrossRefGoogle Scholar
  12. 12.
    Weinhold, R. (2006) Epigenetics: the science of change, Environ Health Persp 114, A160–A167.CrossRefGoogle Scholar
  13. 13.
    Hastie, T., Tibshirani, R., and Friedman, J.H. (2001) The Elements of Statistical Learning, Springer–Verlag, New York.Google Scholar
  14. 14.
    Herman, J.G. and Baylin, S.B., (2003) Gene silencing in cancer in association with promoter hypermethylation, NEJM 349, 2042–2054.PubMedCrossRefGoogle Scholar
  15. 15.
    Bird, A.P. (1980) DNA methylation and the frequency of CpG in animal DNA, Nucleic Acids Res 8, 1499–1504.PubMedCrossRefGoogle Scholar
  16. 16.
    Bird, A.P. (1986) CpG rich islands and the function of DNA methylation, Nature 321, 209–213.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardiner-Garden, M. and Frommer, M. (1987) CpG islands in vertebrate genomes, J Mol Biol 196(2), 261–282.PubMedCrossRefGoogle Scholar
  18. 18.
    Heard, E. (2004) Recent advances in X-chromosome inactivation, Curr Opin Cell Biol 16, 247–255.PubMedCrossRefGoogle Scholar
  19. 19.
    Yan, P.S., Efferth, T., Chen, H.L., Lin, J., Rödel, F., Fuzesi, L., and Huang, T.H. (2002) Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation, Methods 27, 162–169.PubMedCrossRefGoogle Scholar
  20. 20.
    van Rijnsoever, M., Grieu, F., Elsaleh, H., Joseph, D., and Iacopetta, B. (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands, Gut 51, 797–802.PubMedCrossRefGoogle Scholar
  21. 21.
    Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer, Nat Rev Genet 3, 415–428.PubMedCrossRefGoogle Scholar
  22. 22.
    Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983) The 5-methylcytosine content of DNA from human tumors, Nucleic Acids Res 11, 6883–6894.PubMedCrossRefGoogle Scholar
  23. 23.
    Feinberg, A.P., Gehrke, C.W., Kuo, K.C., and Ehrlich, M. (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia, Cancer Res 48,1159–1161.PubMedGoogle Scholar
  24. 24.
    Ogino, S., Nosho, K., Kirkner, G.J., Kawasaki, T., Chan, A.T., Schernhammer, E.S., Giovannucci, E.L., and Fuchs, C.S. (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer, J Natl Cancer Inst 100, 1734–1738.PubMedCrossRefGoogle Scholar
  25. 25.
    Feinberg, A.P., Ohlsson, R., and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer, Nat Rev Genet 7, 21–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Schumacher, A., Kapranov, P., Kaminsky, Z., Flanagan, J., Assadzadeh, A., Yau, P., Virtanen, C., Winegarden, N., Cheng, J., Gingeras, T., and Petronis, A. (2006) Microarray based DNA methylation profiling: technology and applications, Nucleic Acids Res 34(2), 528–542.PubMedCrossRefGoogle Scholar
  27. 27.
    Beck, S. and Rakyan, V.K. (2008) The methylome: approaches for global DNA methylation profiling, Trends Genet 24(5), 231–237.PubMedCrossRefGoogle Scholar
  28. 28.
    Zilberman, D. and Henikoff, S. (2007) Genome-wide analysis of DNA methylation patterns, Development 134, 3959–3965.PubMedCrossRefGoogle Scholar
  29. 29.
    Dupont, J.M., Tost, J., Jammes, H., and Gut, I.G. (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology, Anal Biochem 333, 119–127.PubMedCrossRefGoogle Scholar
  30. 30.
    Eads, C.A., Danenberg, K.D., Kawakami, K., Saltz, L.B., Blake, C., Shibata, D., Danenberg, P.V., and Laird, P.W. (2000) MethyLight: A high-throughput assay to measure DNA methylation, 28, E32.Google Scholar
  31. 31.
    Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells, Nat Genet 37, 853–862.PubMedCrossRefGoogle Scholar
  32. 32.
    Khulan, B., Thompson, R.F., Ye, K., Fazzari, M.J., Suzuki, M., Stasiek, E., Figueroa, M.E., Glass, J.L., Chen, Q., Montagna, C., Hatchwell, E., Selzer, R.R., Richmond, T.A., Green, R.D., Melnick, A., and Greally, J.M. (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay, Genome Res 16, 1046–1055.PubMedCrossRefGoogle Scholar
  33. 33.
    Sutherland, E., Coe, L., and Raleigh, E.A. (1992) McrBC: a multisubunit GTP-dependent restriction endonuclease, J Mol Biol 225, 327–348.PubMedCrossRefGoogle Scholar
  34. 34.
    Clark, S. J., Harrison, J., Paul, C. L., and Frommer, M. (1994) High sensitivity mapping of methylated cytosines, Nucleic Acids Res 22, 2990–2997.PubMedCrossRefGoogle Scholar
  35. 35.
    Clark, S.J., Statham, A., Stirzaker, C., Molloy, P.L., and Frommer, M. (2006) DNA methylation: bisulphite modification and analysis, Nat Protoc 1, 2353–2364.PubMedCrossRefGoogle Scholar
  36. 36.
    Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E.W., Wu, B., Doucet, D., Thomas, N.J., Wang, Y., Vollmer, E., Goldmann, T., Seifart, C., Jiang, W., Barker, D.L., Chee, M.S., Floros, J., and Fan, J. (2006b) High-throughput DNA methylation profiling using universal bead arrays, Genome Res 16, 383–393.PubMedCrossRefGoogle Scholar
  37. 37.
    Frommer, M., McDonald, L.E., Millar, D.S., Collis, C.M., Watt, F., Grigg, G.W., Molloy, P.L., and Paul, C.L. (1982) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands, Proc Natl Acad Sci USA 89(5), 1827–1831.CrossRefGoogle Scholar
  38. 38.
    Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A., Haefliger, C., Horton, R., Howe, K., Jackson, D.K., Kunde, J., Koenig, C., Liddle, J., Niblett, D., Otto, T., Pettett, R., Seemann, S., Thompson, C., West, T., Rogers, J., Olek, A., Berlin, K., and Beck, S. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22, Nat Genet 38, 1378–1385.PubMedCrossRefGoogle Scholar
  39. 39.
    Ehrich, M., Turner, J., Gibbs, P., Lipton, L., Giovanneti, M., Cantor, C., and van den Boom, D. (2008) Cytosine methylation profiling of cancer cell lines, Proc Natl Acad Sci USA 105(12), 4844–4849.PubMedCrossRefGoogle Scholar
  40. 40.
    Jeddeloh, J.A., Greally, J.M., and Rando, O.J. (2008) Reduced-representation methylation mapping, Genome Biol 9(8), 231.PubMedCrossRefGoogle Scholar
  41. 41.
    Down, T.A., Rakyan, V.K., Turner, D.J., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomazou, E.M., Thorne, N.P., Bäckdahl, L., Herberth, M., Howe, K.L., Jackson, D.K., Miretti, M.M., Marioni, J.C., Birney, E., Hubbard, T.J., Durbin, R., Tavaré, S., and Beck, S. (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis, Nat Biotech 27(7), 779–785.CrossRefGoogle Scholar
  42. 42.
    Irizarry, R., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S.A., Jeddeloh, J.A., Wen, B., and Feinberg, A.P. (2008) Comprehensive high-throughput arrays for relative methylation (CHARM), Genome Res 18, 780–790.PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor, K.H., Kramer, R.S., Davis, W.J., Guo J., Du, D.J., Xu, D., Caldwell, C.W., and Shi, H. (2007) Ultradeep bisulphite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing, Cancer Res 67(18), 8511–8518.PubMedCrossRefGoogle Scholar
  44. 44.
    Candiloro, I.L., Mikeska, T., Hokland, P., and Dobrovic, A. (2008) Rapid analysis of heterogeneously methylated DNA using digital methylation-sensitive high resolution melting: application to the CDKN2B (p15) gene, Epigenet Chromatin 31(1), 7–15.CrossRefGoogle Scholar
  45. 45.
    Thompson, R.F., Reimers, M., Khulan, B., Gissot, M., Richmond, T.A., Chen, Q., Zheng, X., Kim, K., and Greally, J.M. (2008) An analytical pipeline for genomic representations used for cytosine methylation studies, Bioinformatics 24(9), 1161–1167.PubMedCrossRefGoogle Scholar
  46. 46.
    Pelizzola, M., Koga, Y., Urban, A.E., Krauthammer, M., Weissman, S., Halaban, R., and Molinaro, A.M. (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment, Genome Res 18(10), 1652–1659.PubMedCrossRefGoogle Scholar
  47. 47.
    Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M., Ji, H., Potash, J.B., Sabunciyan, S., and Feinberg, A.P. (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores, Nat Genet 41(2), 178–86.Google Scholar
  48. 48.
    Brock, M.V., Hooker, C.M., Ota-Machida, E., Han, Y., Guo, M., Ames, S., Glöckner, S., Piantadosi, S., Gabrielson, E., Pridham, G., Pelosky, K., Belinsky, S.A., Yang, S.C., Baylin, S.B., and Herman, J.G. (2008) DNA methylation markers and early recurrence in stage I lung cancer, N Engl J Med 358, 1118–1128.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsou, J.A., Hagen, J.A., Carpenter, C.L., and Laird-Offringa, I.A. (2002) DNA methylation analysis: a powerful new tool for lung cancer diagnosis, Oncogene 21, 5450–5461.PubMedCrossRefGoogle Scholar
  50. 50.
    Siegmund, K.D., Connor, C.M., Campan, M., Tiffany, L.I., Weisenberger, D.J., Biniszkiewicz, D., Jaenisch, R., Laird, P.W., and Akbarian, S. (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons, PLOS ONE 2(9), e895.PubMedCrossRefGoogle Scholar
  51. 51.
    Siegmund, K.D. and Laird, P.W. (2002) Analysis of complex methylation data, Methods 27, 170–178.PubMedCrossRefGoogle Scholar
  52. 52.
    Efron, B. and Tibshirani, R.J. (1994) An Introduction to the Bootstrap. Chapman & Hall, London.Google Scholar
  53. 53.
    Herman, J.G. (1999) Hypermethylation of tumor suppressor genes in cancer, Semin Cancer Biol 9, 359–367.PubMedCrossRefGoogle Scholar
  54. 54.
    Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J.G., Baylin, S.B., and Issa, J.P. (1999) CpG island methylator phenotype in colorectal cancer, Proc Natl Acad Sci USA 96, 8681–8686.PubMedCrossRefGoogle Scholar
  55. 55.
    Li, Q., Jedlicka, A., Ahuja, N., Gibbons, M.C., Baylin, S.B., Burger, P.C., and Issa, J.P. (1998) Concordant methylation of the ER and N33 genes in glioblastoma multiforme, Oncogene 16, 3197–3202.PubMedCrossRefGoogle Scholar
  56. 56.
    Toyota, M., Ahuja, N., Suzuki, H., Itoh, F., Ohe-Toyota, M., Imai, K., Baylin, S.B., and Issa, J.P. (1999) Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype, Cancer Res 59, 5438–5442.PubMedGoogle Scholar
  57. 57.
    Kim, H., Kim, Y.H., Kim, S.E., Kim, N.G., Noh, S.H., and Kim, H. (2003) Concerted promoter hypermethylation of hMLH1, p16INK4A, and E-cadherin in gastric carcinomas with microsatellite instability, J Pathol 200, 23–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Ueki, T., Toyota, M., Sohn, T., Yeo, C.J., Issa, J.P., Hruban, R.H., Goggins, M. (2000) Hypermethylation of multiple genes in pancreatic adenocarcinoma, Cancer Res 60, 1835–1839.PubMedGoogle Scholar
  59. 59.
    Strathdee, G., Appleton, K., Illand, M., Millan, D.W., Sargent, J., Paul, J., and Brown, R. (2001) Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes, Am J Pathol 158, 1121–1127.PubMedCrossRefGoogle Scholar
  60. 60.
    Garcia-Manero, G., Daniel, J., Smith, T.L., Kornblau, S.M., Lee, M., Kantarjian, H.M., and Issa, P.J. (2002) DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia, Clin Cancer Res 8, 2217–2224.PubMedGoogle Scholar
  61. 61.
    Toyota, M. and Issa, J.P. (1999) CpG island methylator phenotypes in aging and cancer, Semin Cancer Biol 9(5), 349–357.PubMedCrossRefGoogle Scholar
  62. 62.
    Toyota, M., Ohe-Toyota, M., Ahuja, N., and Issa, J.P. (2000) Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype, Proc Natl Acad Sci USA 97, 710–715.PubMedCrossRefGoogle Scholar
  63. 63.
    Storey, J.D. and Tibshirani, R. (2003) Statistical significance for genomewide studies, Proc Natl Acad Sci USA 100, 9440–9445.PubMedCrossRefGoogle Scholar
  64. 64.
    Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc Ser B 57, 289–300.Google Scholar
  65. 65.
    Holm, S. (1979) A simple sequentially rejective multiple test procedure, Scand J Stat 6, 65–70.Google Scholar
  66. 66.
    Wacholder, S., Chanock, S., Garcia-Closas, M., El-Ghormli, L., and Rothman, N. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies, J Natl Cancer Inst 96, 434–442.PubMedCrossRefGoogle Scholar
  67. 67.
    Wakefield, J. (2008) Reporting and interpretation in genome-wide association studies, Int J Epidemiol 37, 641–653.PubMedCrossRefGoogle Scholar
  68. 68.
    Dudoit, S., Fridlyand, J., and Speed, T.P. (2000) Comparison of discrimination methods for the classification of tumors using gene expression data, Department of Statistics, University of California, Berkeley, CA, Tech Rep 576.Google Scholar
  69. 69.
    Hand, D.J. (2008) Breast cancer diagnosis from protein mass spectrometry data: a comparative evaluation, Stat Appl Genet Mol Biol 7(2), 15, 1–21.Google Scholar
  70. 70.
    Molinaro, A.M., Simon, R., and Pfeiffer, R.M. (2005) Prediction error estimation: a comparison of resampling methods, Bioinformatics 21(15), 3301–3307.PubMedCrossRefGoogle Scholar
  71. 71.
    Miller, A. (2002) Subset Selection in Regression. Chapman & Hall/CRC, London.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Melissa J. Fazzari
    • 1
  • John M. Greally
    • 2
  1. 1.Division of Biostatistics, Department of Epidemiology and Population Health, Department of GeneticsAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of Genetics, Department of MedicineAlbert Einstein College of MedicineBronxUSA

Personalised recommendations