Skip to main content

Basics of Bayesian Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 620))

Abstract

Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Press, J. S. and Tanur, J. M. (2001) The Subjectivity of Scientists and the Bayesian Approach. Wiley, New York.

    Book  Google Scholar 

  2. Berry, D. A. (1996) Statistics: A Bayesian Perspective. Wiley, New York.

    Google Scholar 

  3. Winkler, R. L. (2003). Introduction to Bayesian Inference and Decision. 2nd Edition.

    Google Scholar 

  4. Bolstad, W. M. (2004). Introduction to Bayesian Statistics. John Wiley, New York.

    Book  Google Scholar 

  5. Lee, P. M. (2004). Bayesian Statistics: An Introduction. Arnold, New York.

    Google Scholar 

  6. Sivia, D., and Skilling, J. (2006) Data Analysis: A Bayesian Tutorial. Oxford University Press, New York.

    Google Scholar 

  7. Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. 2nd Edition, Springer-Verlag, New York.

    Book  Google Scholar 

  8. Bernardo, J. M., and Smith, A. F. M. (1994) Bayesian Theory. Wiley, Chichester.

    Book  Google Scholar 

  9. Box, G. E. P., and Tiao, G. C. (1992) Bayesian inference in statistical analysis. Wiley, New York.

    Book  Google Scholar 

  10. Carlin, B. P., and Louis, T. A. (2008) Bayesian Methods for Data Analysis. 3rd Edition. Chapman & Hall/CRC, Boca Raton, Florida.

    Google Scholar 

  11. Congdon, P. (2007) Bayesian Statistical Modelling. 2nd Edition. Wiley, New York.

    Google Scholar 

  12. Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003) Bayesian Data Analysis. 2nd edition. CRC Press, New York.

    Google Scholar 

  13. Ghosh, J. K., Delampady, M., and Samanta, S. (2006) An Introduction to Bayesian Analysis. Springer, New York.

    Google Scholar 

  14. Robert, C. P. (2001) The Bayesian Choice. Springer Verlag, New York.

    Google Scholar 

  15. Bayes, T. (1764) An Essay Toward Solving a Problem in the Doctrine of Chances. Philos. Trans. R. Soc. London 53, 370–418.

    Google Scholar 

  16. Laplace, P. S. (1774) Mmoire sur la probabilit des causes par les vnements. Mmoires de mathmatique et de physique presents. lAcadmie royale des sciences par divers savants & lus dans ses assembles 6, 621–656.

    Google Scholar 

  17. Kolmogorov, A. N. (1930) Sur la loi forte des grands nombres. Comptes Rendus de l’Academie des. Sciences 191, 910–912.

    Google Scholar 

  18. Pitman, E. (1936) Sufficient statistics and intrinsic accuracy. Proc. Camb. Phil. Soc. 32, 567–579.

    Article  Google Scholar 

  19. Koopman, B. (1936) On distribution admitting a sufficient statistic. Trans. Amer. math. Soc. 39, 399–409.

    Article  Google Scholar 

  20. Diaconis, P. and Ylvisaker, D. (1979) Conjugate priors for exponential families. Ann. Stat. 7, 269–281.

    Article  Google Scholar 

  21. Consonni, G., and Veronese, P. (1992) Conjugate priors for exponential families having quadratic variance functions. J. Amer. Stat. Assoc. 87, 1123–1127.

    Article  Google Scholar 

  22. Consonni, G., and Veronese, P. (2001) Conditionally reducible natural exponential families and enriched conjugate priors. Scand. J. Stat. 28, 377–406.

    Article  Google Scholar 

  23. Gutirrez-Pea, E. (1997) Moments for the canonical parameter of an exponential family under a conjugate distribution. Biometrika. 84, 727–732.

    Article  Google Scholar 

  24. Jeffreys, H. (1946) An invariant form for the prior probability estimation problems. Proc. R. Stat. Soc. London (Ser. A). 186, 453–461.

    Article  CAS  Google Scholar 

  25. Hartigan, J. A. (1998) The maximum likelihood prior. Ann. Stat. 26, 2083–2103.

    Article  Google Scholar 

  26. Bernardo, J. M. (1979) Reference posterior distributions for Bayesian inference, J. R. Stat. Soc., B. 41, 113–147 (with discussion).

    Google Scholar 

  27. Zellner, A. (1996) Models, Prior Information, and Bayesian Analysis. J. Econom. 75, 51–68.

    Article  Google Scholar 

  28. Lhoste, E. (1923) Le Calcul des probabilits appliqu lartillerie, lois de probabilit apriori. Revue dartillerie, Mai-Aot, Berger-Levrault, Paris.

    Google Scholar 

  29. Berger, J. O., and Strawderman, W. E. (1996) Choice of hierarchical priors: Admissibility in estimation of normal means. Ann. Stat. 24, 931–951.

    Article  Google Scholar 

  30. Efron, B., and Morris, C. (1975) Data analysis using Stein’s estimator and its generalizations. J. Amer. Stat. Assoc. 70, 311–319.

    Article  Google Scholar 

  31. Davis, P. J., and Rabinowitz, P. (1984) Methods of Numerical Integration. 2nd Edition. Academic Press, New York.

    Google Scholar 

  32. Ueberhuber, C. W. (1997) Numerical Computation 2: Methods, Software, and Analysis. Springer-Verlag, Berlin.

    Book  Google Scholar 

  33. Piessens, R., de Doncker‐Kapenga, E., Uberhuber, C., and Kahaner, D. (1983) QUADPACK, A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.

    Google Scholar 

  34. Metropolis, N., and Ulam, S. (1949) The Monte Carlo Method. J. Amer. Stat. Assoc., 44, 335–341.

    Article  CAS  Google Scholar 

  35. Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York.

    Google Scholar 

  36. Gentle, J. E. (2003) Random Number Generation and Monte Carlo Methods, 2nd Edition. Springer-Verlag, New York.

    Google Scholar 

  37. Berg, B. A. (2004) Markov chain Monte Carlo Simulations and their Statistical Analysis. World Scientific, Singapore.

    Google Scholar 

  38. Chib, S. and Greenberg, E. (1995) Understanding the MetropolisHastings Algorithm. Am. Stat. 49(4), 327–335.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ghosh, S.K. (2010). Basics of Bayesian Methods. In: Bang, H., Zhou, X., van Epps, H., Mazumdar, M. (eds) Statistical Methods in Molecular Biology. Methods in Molecular Biology, vol 620. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-580-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-580-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-578-1

  • Online ISBN: 978-1-60761-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics