Improved Reporting of Statistical Design and Analysis: Guidelines, Education, and Editorial Policies

  • Madhu Mazumdar
  • Samprit Banerjee
  • Heather L. Van Epps
Part of the Methods in Molecular Biology book series (MIMB, volume 620)


A majority of original articles published in biomedical journals include some form of statistical analysis. Unfortunately, many of the articles contain errors in statistical design and/or analysis. These errors are worrisome, as the misuse of statistics jeopardizes the process of scientific discovery and the accumulation of scientific knowledge. To help avoid these errors and improve statistical reporting, four approaches are suggested: (1) development of guidelines for statistical reporting that could be adopted by all journals, (2) improvement in statistics curricula in biomedical research programs with an emphasis on hands-on teaching by biostatisticians, (3) expansion and enhancement of biomedical science curricula in statistics programs, and (4) increased participation of biostatisticians in the peer review process along with the adoption of more rigorous journal editorial policies regarding statistics. In this chapter, we provide an overview of these issues with emphasis to the field of molecular biology and highlight the need for continuing efforts on all fronts.

Key words

Biomedical sciences molecular biology statistical design and analysis reporting guideline statistical education statistical errors randomized clinical trials observational study meta-analysis class discovery class prediction 



Drs. Mazumdar and Banerjee were partially supported by Clinical Translational Science Center (CTSC) (UL1-RR024996). Dr. Mazumdar was additionally supported by AHRQ RFA-HS-05-14, NIGMS R25CA105012, and NCI HHSN261200622004C. Ms. Alison M. Edwards is thanked for assisting in the literature search and for providing comments on the write-up.


  1. 1.
    Chan, A., and Altman, D. (2005) Epidemiology and reporting of randomised trials published in PubMed journals, Lancet 365, 1159–1162.PubMedCrossRefGoogle Scholar
  2. 2.
    Hayden, J. A., Cote, P., and Bombardier, C. (2006) Evaluation of the quality of prognosis studies in systematic reviews, Ann Intern Med 144, 427–437.PubMedGoogle Scholar
  3. 3.
    Lee, C., and Chi, K. (2000) The standard of reporting of health-related quality of life in clinical cancer trials, J Clin Epidemiol 53, 451–458.PubMedCrossRefGoogle Scholar
  4. 4.
    Mills, E., Loke, Y. K., Wu, P., Montori, V. M., Perri, D., Moher, D., and Guyatt, G. (2004) Determining the reporting quality of RCTs in clinical pharmacology, Br J Clin Pharmacol 58, 61–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Pocock, S. J., Collier, T. J., Dandreo, K. J., de Stavola, B. L., Goldman, M. B., Kalish, L. A., Kasten, L. E., and McCormack, V. A. (2004) Issues in the reporting of epidemiological studies: A survey of recent practice, BMJ 329, 883.PubMedCrossRefGoogle Scholar
  6. 6.
    Yoo, K., Shin, H., Chang, S., Choi, B., Hong, Y., Kim, D., Kang, D., Cho, N., Shin, C., and Jin, Y. (2005) Genomic epidemiology cohorts in Korea: Present and the future, Asian Pac J Cancer Prev 6, 238–243.PubMedGoogle Scholar
  7. 7.
    Steels, E., Paesmans, M., Berghmans, T., Branle, F., Lemaitre, F., Mascaux, C., Meert, A., Vallot, F., Lafitte, J., and Sculier, J. (2001) Role of p53 as a prognostic factor for survival in lung cancer: A systematic review of the literature with a meta-analysis, Eur Respir J 18, 705–719.PubMedCrossRefGoogle Scholar
  8. 8.
    Emerson, J., and Colditz, G. (1983) Use of statistical analysis in the New England journal of medicine, N Engl J Med 309, 709–713.PubMedCrossRefGoogle Scholar
  9. 9.
    Juzych, M., Shin, D., Seyedsadr, M., Siegner, S., and Juzych, L. (1992) Statistical techniques in ophthalmic journals, Arch Ophthalmol 110, 1225–1229.PubMedCrossRefGoogle Scholar
  10. 10.
    Kanter, M., and Taylor, J. (1994) Accuracy of statistical methods in transfusion: A review of articles from July/August 1992 through June 1993, Transfusion 34, 697–701.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenfeld, R., and Rockette, H. (1991) Biostatistics in otolaryngology journals, Arch Otolaryngol Head Neck Surg 117, 1172–1176.PubMedCrossRefGoogle Scholar
  12. 12.
    Seldrup, J. (1997) Whatever happened to the t-test?, Drug Inf J 31, 745–750.CrossRefGoogle Scholar
  13. 13.
    Wang, Q., and Zhang, B. (1998) Research design and statistical methods in Chinese medical journals, JAMA 280, 283–285.PubMedCrossRefGoogle Scholar
  14. 14.
    Holmes, T. H. (2004) Ten categories of statistical errors: A guide for research in endocrinology and metabolism, Am J Physiol – Endocrinol Metab 286, E495–501.Google Scholar
  15. 15.
    Strasak, A., Zaman, Q., Pfeiffer, K., Gobel, G., and Ulmer, H. (2007) Statistical errors in medical research – a review of common pitfalls, Swiss Med Wkly 137, 44–49.PubMedGoogle Scholar
  16. 16.
    Adam, B., Qu, Y., Davis, J., Ward, M., Clements, M., and Cazares, L. (2002) Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men, Cancer Res 62, 3609–3614.PubMedGoogle Scholar
  17. 17.
    Drake, R., Manne, U., Bao-Ling, A., Ahn, C., Cazares, L., and Semmes, O. (2003) SELDI-TOF-MS profiling of serum for early detection of colorectal cancer, Gastroenterology 124 (Suppl 1), A650.CrossRefGoogle Scholar
  18. 18.
    Petricoin, E., Ardekani, A., Hitt, B., Levine, P., Fusaro, V., and Steinberg, S. (2002) Use of proteomic patterns in serum to identify ovarian cancer, Lancet 359, 572–577.PubMedCrossRefGoogle Scholar
  19. 19.
    Petricoin, E., Ornstein, D., Paweletz, C., Ardekani, A., Hackett, P., and Hitt, B. (2002) Serum proteomic patterns for detection of prostate cancer, J Natl Cancer Inst 94, 1576–1578.PubMedCrossRefGoogle Scholar
  20. 20.
    Vlahou, A., Schellhammer, P., Mendrinos, S., Patel, K., Kondylis, F., and Gong, L. (2001) Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine, Am J Pathol 158, 1491–1502.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu, W., Wang, X., Ma, Y., Rao, M., Glimm, J., and Kovach, J. (2003) Detection of cancer-specific markers amid massive mass spectral data, Proc Natl Acad Sci USA 100, 14666–14671.PubMedCrossRefGoogle Scholar
  22. 22.
    Pollack, A. (2004) New cancer test stirs hope and concern, New York Times Feb 3rd [D1, D6].Google Scholar
  23. 23.
    Marcus, A. (2002) Testing for ovarian cancer is on the way, Wall St J [D1, D2].Google Scholar
  24. 24.
    Diamandis, E. (2003) Re: Serum proteomic patterns for detection of prostate cancer [author reply 90–91], J Natl Cancer Inst 95, 489–490.PubMedCrossRefGoogle Scholar
  25. 25.
    Diamandis, E. (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations, Mol Cell Proteomics 3, 367–378.PubMedCrossRefGoogle Scholar
  26. 26.
    Diamandis, E. (2004) OvaCheck: Doubts voiced soon after publication, Nature 430.Google Scholar
  27. 27.
    Diamandis, E. (2003) Point: Proteomic patterns in biological fluids: Do they represent the future of cancer diagnostics?, Clin Chem 49, 1272–1275.PubMedCrossRefGoogle Scholar
  28. 28.
    Garber, K. (2004) Debate rages over proteomic patterns, J Natl Cancer Inst 96, 816–818.PubMedCrossRefGoogle Scholar
  29. 29.
    Baggerly, K., Coombes, K., Morris, J., and (2005) Bias, randomization, and ovarian proteomic data: A reply to “Producers and consumers”, Cancer Inform 1, 9–14.PubMedGoogle Scholar
  30. 30.
    Baggerly, K., Edmonson, S., Morris, J., and Coombes, K. (2004) High-resolution serum proteomic patterns for ovarian cancer detection, Endocr Relat Cancer 11, 583–584.PubMedCrossRefGoogle Scholar
  31. 31.
    Baggerly, K., Morris, J., and Coombes, K. (2004) Reproducibility of SELDITOF protein patterns in serum: Comparing datasets from different experiments, Bioinformatics 20, 777–785.PubMedCrossRefGoogle Scholar
  32. 32.
    Baggerly, K., Morris, J., Edmonson, S., and Coombes, K. (2005) Signal in noise: Evaluating reported reproducibility of serum proteomic tests for ovarian cancer, J Natl Cancer Inst 97, 307–309.PubMedCrossRefGoogle Scholar
  33. 33.
    Ransohoff, D. (2005) Lessons from controversy: Ovarian cancer screening and serum proteomics, J Natl Cancer Inst 97, 315–319.PubMedCrossRefGoogle Scholar
  34. 34.
    Ransohoff, D. (2007) How to improve reliability and efficiency of research about molecular markers: Roles of phases, guidelines, and study design, J Clin Epidemiol 60, 1205–1219.PubMedCrossRefGoogle Scholar
  35. 35.
    DeMets, D., Stormo, G., Boehnke, M., Louis, T., Taylor, J., and Dixon, D. (2006) Training of the next generation of biostatisticians: A call to action in the U.S., Statist Med 25, 3415–3429.CrossRefGoogle Scholar
  36. 36.
    Windish, D. M., Huot, S. J., and Green, M. L. (2007) Medicine residents' understanding of the biostatistics and results in the medical literature, JAMA 298, 1010–1022.PubMedCrossRefGoogle Scholar
  37. 37.
    Deutsch, R., Hurwitz, S., Janosky, J., and Oster, R. (2007) The role of education in biostatistical consulting, Statist Med 26, 709–720.CrossRefGoogle Scholar
  38. 38.
    Anonymous. (1979) Uniform requirements for manuscripts submitted to biomedical journals. International steering committee of medical editors, Br Med J 1, 532–535.CrossRefGoogle Scholar
  39. 39.
    Evans, M. (1989) Presentation of manuscripts for publication in the British Journal of Surgery, Br J Surg 76, 1311–1315.PubMedCrossRefGoogle Scholar
  40. 40.
    Altman, D. G., Gore, S. M., Gardner, M. J., and Pocock, S. J. (1983) Statistical guidelines for contributors to medical journals, BMJ 286, 1489–1493.PubMedCrossRefGoogle Scholar
  41. 41.
    Curran-Everett, D., Benos, D. J., and American Physiological, S. (2004) Guidelines for reporting statistics in journals published by the American Physiological Society, Am J Physiol – Endocrinol Metab 287, E189–191.Google Scholar
  42. 42.
    Bossuyt, P. M., Reitsma, J. B., Bruns, D. E., Gatsonis, C. A., Glasziou, P. P., Irwig, L. M., Lijmer, J. G., Moher, D., Rennie, D., De Vet, H. C. W., and Standards for Reporting of Diagnostic, A. (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative, Am J Roentgenol 181, 51–55.Google Scholar
  43. 43.
    McShane, L. M., Altman, D. G., Sauerbrei, W., Taube, S. E., Gion, M., Clark, G. M., and Statistics Subcommittee of the, N. C. I. E. W. G. o. C. D. (2005) REporting recommendations for tumour MARKer prognostic studies (REMARK).[see comment], Br J Cancer 93, 387–391.PubMedCrossRefGoogle Scholar
  44. 44.
    Dickinson, K., Bunn, F., Wentz, R., Edwards, P., and Roberts, I. (2000) Size and quality of randomized controlled trials in head injury: Review of published studies, BMJ 320, 1308–1311.PubMedCrossRefGoogle Scholar
  45. 45.
    Hotopf, M., Lewis, G., and Normand, C. (1997) Putting trials on trial- the costs and consequences of small trials in depression: A systematic review of methodology, J Epidemiol Community Health 51, 354–358.PubMedCrossRefGoogle Scholar
  46. 46.
    Thornley, B., and Adams, C. (1998) Content and quality of 2000 controlled trials in schizophrenia over 50 years, BMJ 317, 1181–1184.PubMedCrossRefGoogle Scholar
  47. 47.
    Pildal, J., Hróbjartsson, A., Jørgensen, K., Hilden, J., Altman, D., and Gotzsche, P. (2007) Impact of allocation concealment on conclusions drawn from meta-analyses of randomized trials, Int J Epidemiol 36, 847–857.PubMedCrossRefGoogle Scholar
  48. 48.
    Begg, C., Cho, M., Eastwood, S., Horton, R., Moher, D., Olkin, I., Pitkin, R., Rennie, D., Schulz, K., Simel, D., and Stroup, D. (1996) Improving the quality of reporting of randomized controlled trials. The CONSORT statement, JAMA 268, 637–639.CrossRefGoogle Scholar
  49. 49.
    Egger, M., Jüni, P., and Bartlett, C. (2001) The value of patient flow charts in reports of randomized controlled trials: Bibliographic study. The CONSORT group, JAMA 285, 1996–1999.PubMedCrossRefGoogle Scholar
  50. 50.
    Devereaux, P. J., Manns, B. J., Ghali, W. A., Quan, H., Guyatt, G. H., Manns, B. J., Ghali, W. A., Quan, H., and Guyatt, G. H. (2002) The reporting of methodological factors in randomized controlled trials and the association with a journal policy to promote adherence to the consolidated standards of reporting trials (CONSORT) checklist, Control Clin Trials 23, 380–388.PubMedCrossRefGoogle Scholar
  51. 51.
    Moher, D., Jones, A., and Lepage, L. (2001) Use of the CONSORT statement and quality of reports of randomized trials: A comparative before and after evaluation? The CONSORT group, JAMA 285, 1992–1995.PubMedCrossRefGoogle Scholar
  52. 52.
    Moher, D., Schulz, K., and Altman, D. (for the Consort Group 2001) The CONSORT statement: Revised recommendations for improving the quality of reports of parallel-group randomized trials, Lancet 357, 1191–1194.PubMedCrossRefGoogle Scholar
  53. 53.
    Mills, E. J., Wu, P., Gagnier, J., Devereaux, P. J., Mills, E. J., Wu, P., and Gagnier, J. (2005) The quality of randomized trial reporting in leading medical journals since the revised CONSORT statement, Contemp Clin Trials 26, 480–487.PubMedCrossRefGoogle Scholar
  54. 54.
    Glasziou, P., Vandenbroucke, J., and Chalmers, I. (2004) Assessing the quality of research, BMJ 328, 39–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee, W., Bindman, J., Ford, T., Glozier, N., and Moran, P. (2007) Bias in psychiatric case-control studies: Literature survey, Br J Psychiatry 190, 204–209.PubMedCrossRefGoogle Scholar
  56. 56.
    Tooth, L., Ware, R., Bain, C., Purdie, D., and Dobson, A. (2005) Quality of reporting of observational longitudinal research, Am J Epidemiol 161, 280–288.PubMedCrossRefGoogle Scholar
  57. 57.
    Bogardus, S., Concato, J., and Feinstein, A. (1999) Clinical epidemiological quality in molecular genetic research: The need for methodological standards, JAMA 281, 1919–1926.PubMedCrossRefGoogle Scholar
  58. 58.
    Anonymous. (1981) Guidelines for documentation of epidemiologic studies. Epidemiology work group of the interagency regulatory liaison group, Am J Epidemiol 114, 609–613.Google Scholar
  59. 59.
    vonElm, E., Altman, D., Egger, M., Pocock, S., Gøtzsche, P., and Vandenbroucke, J. (2007) for the STROBE Initiative: The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies, Lancet 370, 1453–1457.CrossRefGoogle Scholar
  60. 60.
    Sacks, H., Berrier, J., Reitman, D., Ancona-Berk, V., and Chalmers, T. (1987) Meta-analyses of randomized controlled trials, N Engl J Med 316, 450–455.PubMedCrossRefGoogle Scholar
  61. 61.
    Sacks, H., Reitman, D., Pagano, D., and Kupelnick, B. (1996) Meta-analysis: An update, Mt Sinai J Med 63, 216–224.PubMedGoogle Scholar
  62. 62.
    Moher, D., Cook, D. J., Eastwood, S., Olkin, I., Rennie, D., and Stroup, D. F. (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: The QUOROM statement. Quality of reporting of meta-analyses [see comment], Lancet 354, 1896–1900.PubMedCrossRefGoogle Scholar
  63. 63.
    Delaney, A., Bagshaw, S., Ferland, A., Manns, B., Laupland, K., and Doig, C. (2005) A systematic evaluation of the quality of meta-analyses in the critical care literature, Crit Care 9, R575–R582.PubMedCrossRefGoogle Scholar
  64. 64.
    Oxman, A., and Guyatt, G. (1991) Validation of an index of the quality of review articles, J Clin Epidemiol 44, 1271–1278.PubMedCrossRefGoogle Scholar
  65. 65.
    Wen, J., Ren, Y., Wang, L., Li, Y., Liu, Y., Zhou, M., Liu, P., Ye, L., Li, Y., and Tian, W. (2008) The reporting quality of meta-analyses improves: A random sampling study, J Clin Epidemiol 6, 770–775.CrossRefGoogle Scholar
  66. 66.
    Hind, D., and Booth, A. (2007) Do health technology assessments comply with QUOROM diagram guidance? An empirical study, BMC Med Res Methodol 7, 1–9.CrossRefGoogle Scholar
  67. 67.
    Shapiro, S. (1994) Meta-analysis/shmeta-analysis, Am J Epidemiol 140, 771–778.PubMedGoogle Scholar
  68. 68.
    Stroup, D., Thacker, S., Olson, C., Glass, R., and Hutwagner, L. (2001) Characteristics of meta-analyses related to acceptance for publication in a medical journal, J Clin Epidemiol 54, 655–660.PubMedCrossRefGoogle Scholar
  69. 69.
    Blettner, M., Sauerbrei, W., and Schlehofer, B. (1999) Traditional reviews, meta-analyses and pooled analyses in epidemiology, Int J Epidemiol 28, 1–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Easterbrook, P., Berlin, J., Gopalan, R., and Matthews, D. (1991) Publication bias in clinical research, Lancet 337, 867–872.PubMedCrossRefGoogle Scholar
  71. 71.
    Schlesselman, J. (1997) Risk of endometrial cancer in relation to use of combined oral contraceptives: A practitioner's guide to meta-analysis, Hum Reprod 12, 1851–1863.PubMedCrossRefGoogle Scholar
  72. 72.
    Corvol, J. C., Anzouan-Kacou, J. B., Fauveau, E., Bonnet, A. M., Lebrun-Vignes, B., Girault, C., Agid, Y., Lechat, P., Isnard, R., Lacomblez, L., Corvol, J.-C., Anzouan-Kacou, J.-B., Fauveau, E., Bonnet, A.-M., Lebrun-Vignes, B., Girault, C., Agid, Y., Lechat, P., Isnard, R., and Lacomblez, L. (2007) Heart valve regurgitation, pergolide use, and parkinson disease: An observational study and meta-analysis, Arch Neurol 64, 1721–1726.PubMedCrossRefGoogle Scholar
  73. 73.
    Fryback, D., and Thornbury, J. (1991) The efficacy of diagnostic imaging, Med Decis Making 11, 88–94.PubMedCrossRefGoogle Scholar
  74. 74.
    Guyatt, G., Tugwell, P., Feeny, D., Haynes, R., and Drummond, M. (1986) A framework for clinical evaluation of diagnostic technologies, Can Med Assoc J 134, 587–594.Google Scholar
  75. 75.
    Kent, D., and Larson, E. (1992) Disease, level of impact, and quality of research methods. Three dimensions of clinical efficacy assessment applied to magnetic resonance imaging, Invest Radiol 27, 245–254.PubMedCrossRefGoogle Scholar
  76. 76.
    Griner, P., Mayewski, R., Mushlin, A., and Greenland, P. (1981) Selection and interpretation of diagnostic tests and procedures. Principles and applications, Ann Intern Med 94, 557–592.PubMedGoogle Scholar
  77. 77.
    Metz, C. (1978) Basic principles of ROC analysis, Semin Nucl Med 8, 283–298.PubMedCrossRefGoogle Scholar
  78. 78.
    Sackett, D., Haynes, R., Guyatt, G., and Tugwell, P. (1991) The selection of diagnostic tests, Little, Brown and Company, Boston, Toronto, and London.Google Scholar
  79. 79.
    Begg, C. B. (1987) Biases in the assessment of diagnostic tests, Stat Med 6, 411–423.PubMedCrossRefGoogle Scholar
  80. 80.
    Lijmer, J., Mol, B., Heisterkamp, S., Bonsel, G., Prins, M., and van der Meulen, J. (1999) Empirical evidence of design related bias in studies of diagnostic tests JAMA 282, 1061–1066.PubMedCrossRefGoogle Scholar
  81. 81.
    Reid, M., Lachs, M., and Feinstein, A. (1995) Use of methodological standards in diagnostic test research. Getting better but still not good, JAMA 274, 645–651.PubMedCrossRefGoogle Scholar
  82. 82.
    Devries, S., Hunink, M., and Polak, J. (1996) Summary receiver operating characteristic curves as a technique for meta-analysis of the diagnostic performance of duplex ultrasonography in peripheral arterial disease, Acad Radiol 3, 361–369.CrossRefGoogle Scholar
  83. 83.
    Nelemans, P., Leiner, T., de Vet, H., and van Engelshoven, J. (2000) Peripheral arterial disease: Meta-analysis of the diagnostic performance of MR angiography, Radiology 217, 105–114.PubMedGoogle Scholar
  84. 84.
    Coppus, S., van der Veen, F., Bossuyt, P., and Mol, B. (2006) Quality of reporting of test accuracy studies in reproductive medicine: Impact of the standards for reporting of diagnostic accuracy (STARD) initiative, Fertil Steril 86, 1321–1329.PubMedCrossRefGoogle Scholar
  85. 85.
    Wilczynski, N. (2008) Quality of reporting of diagnostic accuracy studies: No change since STARD statement publication – before-and-after study, Radiology 248, 817–823.PubMedCrossRefGoogle Scholar
  86. 86.
    Smidt, N., Rutjes, A. W. S., van der Windt, D. A. W. M., Ostelo, R. W. J. G., Reitsma, J. B., Bossuyt, P. M., Bouter, L. M., and de Vet, H. C. W. (2005) Quality of reporting of diagnostic accuracy studies, Radiology 235, 347–353.PubMedCrossRefGoogle Scholar
  87. 87.
    Smidt, N., Overbeke, J., de Vet, H., and Bossuyt, P. (2007 ) Endorsement of the STARD statement by biomedical journals: Survey of instructions for authors, Clin Chem 53, 1983–1985.PubMedCrossRefGoogle Scholar
  88. 88.
    Bossuyt, P. (2008) STARD statement: Still room for improvement in the reporting of diagnostic accuracy, Radiology 248, 713–714.PubMedCrossRefGoogle Scholar
  89. 89.
    Altman, D., Lausen, B., Sauerbrei, W., and Schumacher, M. (1994) Dangers of using “optimal” cutpoints in the evaluation of prognostic factors, J Natl Cancer Inst 86, 829–835.PubMedCrossRefGoogle Scholar
  90. 90.
    Brundage, M., Davies, D., and Mackillop, W. (2002) Prognostic factors in non-small cell lung cancer: a decade of progress, Chest 122, 1037–1057.PubMedCrossRefGoogle Scholar
  91. 91.
    Burton, A., and Altman, D. (2004) Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines, Br J Cancer 91, 4–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Mirza, A., Mirza, N., Vlastos, G., and Singletary, S. (2002) Prognostic factors in node-negative breast cancer: A review of studies with sample size more than 200 and follow-up more than 5 years, Ann Surg 235, 10–26.PubMedCrossRefGoogle Scholar
  93. 93.
    Popat, S., Matakidou, A., and Houlston, R. (2004) Thymidylate synthase expression and prognosis in colorectal cancer: A systematic review and meta-analysis, J Clin Oncol 22, 529–536.PubMedCrossRefGoogle Scholar
  94. 94.
    Riley, R., Abrams, K., Sutton, A., Lambert, P., Jones, D., Heney, D., and Burchill, S. (2003) Reporting of prognostic markers: Current problems and development of guidelines for evidence-based practice in the future, Br J Cancer 88, 1191–1198.PubMedCrossRefGoogle Scholar
  95. 95.
    Riley, R., Burchill, S., Abrams, K., Heney, D., Sutton, A., Jones, D., Lambert, P., Young, B., Wailoo, A., and Lewis, I. (2003) A systematic review of molecular and biological markers in tumours of the Ewing’s sarcoma family, Eur J Cancer 39, 19–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Festing, M. (1994) Reduction of animal use: Experimental design and quality of experiments, Lab Anim 28, 212–221.PubMedCrossRefGoogle Scholar
  97. 97.
    Festing, M., and Lovell, D. (1995) The need for statistical analysis of rodent micronucleus test data: Comment on the paper by Ashby and Tinwell, Mutat Res 329, 221–224.PubMedCrossRefGoogle Scholar
  98. 98.
    Festing, M., and Lovell, D. (1996) Reducing the use of laboratory animals in toxicological research and testing by better experimental-design, J R Stat Soc 58 (B-Methodol), 127–140.Google Scholar
  99. 99.
    McCance, I. (1995) Assessment of statistical procedures used in papers in the Australian veterinary journal, Aust Vet J 72, 322–328.PubMedCrossRefGoogle Scholar
  100. 100.
    Ntzani, E., and Ioannidis, J. (2003) Predictive ability of DNA microarrays for cancer outcomes and correlates: An empirical assessment, Lancet 362, 1439–1444.PubMedCrossRefGoogle Scholar
  101. 101.
    Michiels, S., Koscielny, S., and Hill, C. (2005) Prediction of cancer outcome with microarrays: A multiple random validation strategy, Lancet 365, 488–492.PubMedCrossRefGoogle Scholar
  102. 102.
    Yang, M., Ruan, Q., Yang, J., Eckenrode, S., Wu, S., McIndoe, R., and She, J. (2001) A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays, Physiol Genomics 7, 45–53.PubMedGoogle Scholar
  103. 103.
    Dupuy, A., and Simon, R. M. (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting, J Natl Cancer Inst 99, 147–157.PubMedCrossRefGoogle Scholar
  104. 104.
    Jafari, P., and Azuaje, F. (2006) An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors BMC Med Inform and Decis Mak 6, 1–8.CrossRefGoogle Scholar
  105. 105.
    Allison, D., Cui, X., Page, G., and Sabripour, M. (2006) Microarray data analysis: From disarray to consolidation and consensus, Nat Rev Genet 7, 55–65.PubMedCrossRefGoogle Scholar
  106. 106.
    Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P., Holstege, F. C., Kim, I. F., Markowitz, V., Matese, J. C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data, Nat Genet 29, 365–371.PubMedCrossRefGoogle Scholar
  107. 107.
    Shi, L., Reid, L. H., Jones, W. D., Shippy, R., Warrington, J. A., Baker, S. C., Collins, P. J., de Longueville, F., Kawasaki, E. S., Lee, K. Y., et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements, Nat Biotechnol 24, 1151–1161.PubMedCrossRefGoogle Scholar
  108. 108.
    Ioannidis, J., Allison, D., Ball, C., Coulibaly, I., Cui, X., Culhane, A., Falchi, M., Furlanello, C., Game, L., Jurman, G., Mangion, J., Mehta, T., Nitzberg, M., Page, G., Petretto, E., and van Noort, V. (2009) Repeatability of published microarray gene expression analyses, Nat Genet 41, 149–155.PubMedCrossRefGoogle Scholar
  109. 109.
    Urfer, W., Grzegorczyk, M., and Jung, K. (2006) Statistics for proteomics: A review of tools for analyzing experimental data, Proteomics 1–2, 48–55.CrossRefGoogle Scholar
  110. 110.
    Wilkins, M., Appel, R., Van Eyk, J., Chung, C., Görg, A., Hecker, M., Huber, L., Langen, H., Link, A., Paik, Y., Patterson, S., Pennington, S., Rabilloud, T., Simpson, R., Weiss, E., and Dunn, M. (2006) Guidelines for the next 10 years of proteomics, Proteomics 6, 4–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Hunt, S., Thomas, M., Sebastian, L., Pedersen, S., Harcourt, R., Sloane, A., and Wilkins, M. (2005) Optimal replication and the importance of experimental design for gel-based quantitative proteomics, J Proteome Res 4, 809–819.PubMedCrossRefGoogle Scholar
  112. 112.
    Molloy, M., Brzezinski, E., Hang, J., McDowell, M., and VanBogelen, R. (2003) Overcoming technical variation and biological variation in quantitative proteomics, Proteomics 3, 1912–1919.PubMedCrossRefGoogle Scholar
  113. 113.
    Karp, N., and Lilley, K. (2005) Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes, Proteomics 5, 3105–3115.PubMedCrossRefGoogle Scholar
  114. 114.
    Karp, N., Kreil, D., and Lilley, K. (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis, Proteomics 4, 1421–1432.PubMedCrossRefGoogle Scholar
  115. 115.
    Celis, J., Carr, S., and Bradshaw, R. (2008) New guidelines for clinical proteomics manuscripts, Mol Cell Proteomics 7, 2071–2072.CrossRefGoogle Scholar
  116. 116.
    Taylor, C., Paton, N., Lilley, K., Binz, P., Julian, R. J., Jones, A., Zhu, W., Apweiler, R., Aebersold, R., Deutsch, E., Dunn, M., Heck, A., Leitner, A., Macht, M., Mann, M., Martens, L., Neubert, T., Patterson, S., Ping, P., Seymour, S., Souda, P., Tsugita, A., Vandekerckhove, J., Vondriska, T., Whitelegge, J., Wilkins, M., Xenarios, I., Yates, J. r., and Hermjakob, H. (2007) The minimum information about a proteomics experiment (MIAPE), Nat Biotechnol 25, 887–893.PubMedCrossRefGoogle Scholar
  117. 117.
    Lin, B., Clyne, M., and Walsh, M. (2006) Tracking the epidemiology of human genes in the literature: The HuGE published literature database, Am J Epidemiol 164, 1–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Ioannidis, J., Ntzani, E., and Trikalinos, T. (2001) Replication validity of genetic association studies, Nat Genet 29, 306–309.PubMedCrossRefGoogle Scholar
  119. 119.
    Little, J., Bradley, L., Bray, M., Clyne, M., Dorman, J., Ellsworth, D., Hanson, J., Khoury, M., Lau, J., O’Brien, T., Rothman, N., Stroup, D., Taioli, E., Thomas, D., Vainio, H., Wacholder, S., and Weinberg, C. (2002) Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations, Am J Epidemiol 156, 300–310.PubMedCrossRefGoogle Scholar
  120. 120.
    Ziegler, A., Ewhida, A., Brendel, M., and Kleensang, A. (2009) More powerful haplotype sharing by accounting for the mode of inheritance, Genet Epidemiol 33(3): 228–236.Google Scholar
  121. 121.
    Devlin, B., and Roeder, K. (1999) Genomic control for association studies, Biometrics 55, 997–1004.PubMedCrossRefGoogle Scholar
  122. 122.
    Pritchard, J., Stephens, M., and Rosenberg, N. (2000) Association mapping in structured populations, Am J Hum Genet 67, 170–181.PubMedCrossRefGoogle Scholar
  123. 123.
    Price, A., Patterson, N., and Plenge, R. (2006) Principal components analysis corrects for stratification in genome-wide association studies, Nature Genet 38, 904–909.PubMedCrossRefGoogle Scholar
  124. 124.
    Ioannidis, J., Boffetta, P., Little, J., O’Brien, T., Uitterlinden, A., Vineis, P., Balding, D., Chokkalingam, A., Dolan, S., and Flanders, W. (2007) Assessment of cumulative evidence on genetic associations: Interim guidelines, Int J Epidemiol 37, 120–132.PubMedCrossRefGoogle Scholar
  125. 125.
    Ehm, M., Nelson, M., and Spurr, N. (2005) Guidelines for conducting and reporting whole genome/large-scale association studies, Hum Mol Genet 14, 2485–2488.PubMedCrossRefGoogle Scholar
  126. 126.
    Weiss, S. (2001) Association studies in asthma genetics, Am J Respir Crit Care Med 164, 2014–2015.PubMedGoogle Scholar
  127. 127.
    Freimer, N., and Sabatti, C. (2005) Guidelines for association studies in human molecular genetics, Hum Mol Genet 14, 2481–2483.PubMedCrossRefGoogle Scholar
  128. 128.
    IUBMB. (2000) Standards for the PhD degree in the molecular biosciences: Recommendation of the committee on education of the international union of biochemistry and molecular biology, BioFactors 11, 201–215.CrossRefGoogle Scholar
  129. 129.
    Kleinbaum, D., and Klein, M. (2005) Survival analysis: A self-learning text (Statistics for Biology and Health), Springer, New York.Google Scholar
  130. 130.
    Ambrosius, W., and Manatunga, A. (2002) Intensive short courses in biostatistics for fellows and physicians, Stat Med 21, 2739–2756.PubMedCrossRefGoogle Scholar
  131. 131.
    Deutsch, R. (2002) A seminar series in applied biostatistics for clinical research fellows, faculty and staff, Stat Med 21, 801–810.PubMedCrossRefGoogle Scholar
  132. 132.
    Coomarasamy, A., and KS, K. (2004) What is the evidence that postgraduate teaching in evidence based medicine changes anything? A systematic review, BMJ 329, 1017.Google Scholar
  133. 133.
    Ebbert, J., Montori, V., and Schultz, H. (2001) The journal club in postgraduate medical education: A systematic review, Med Teach 23, 455–461.PubMedGoogle Scholar
  134. 134.
    Norman, G., and Shannon, S. (1998) Effectiveness of instruction in critical appraisal (evidence-based medicine) skills: A critical appraisal, CMAJ 158, 177–181.PubMedGoogle Scholar
  135. 135.
    Parkes, J., Hyde, C., Deeks, J., and Milne, R. (2001) Teaching critical appraisal skills in health care settings, Cochrane Database Syst Rev 3, CD001270.PubMedGoogle Scholar
  136. 136.
    Taylor, R., Reeves, B., Ewings, P., Binns, S., Keast, J., and Mears, R. (2000) A systematic review of the effectiveness of critical appraisal skills training for clinicians, Med Educ 34, 120–125.PubMedCrossRefGoogle Scholar
  137. 137.
    Khan, K., and Coomarasamy, A. (2006) A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine, BMC Med Educ 6, 59.PubMedCrossRefGoogle Scholar
  138. 138.
    Rogers, L. (1999) The “win-win” of research, Am J Roentgenol 172, 877.Google Scholar
  139. 139.
    Berman, N., and Gullion, C. (2007) Working with a Statistician, Methods in Molecular Biology: Topics in Biostatistics 404, 489–503.CrossRefGoogle Scholar
  140. 140.
    Tobi, H., Kuik, D., Bezemer, P., and Ket, P. (2001) Towards a curriculum for the consultant biostatistician: identification of central disciplines, Stat in Med 20, 3921–3929.CrossRefGoogle Scholar
  141. 141.
    Altman, D. (1998) Statistical reviewing for medical journals, Stat Med 17, 2661–2674.PubMedCrossRefGoogle Scholar
  142. 142.
    Arnau, C., Cobo, E., Cardellach, F., Ribera, J., Selva, A., and Urrutia, A. (2001) Effect of statistical review on manuscript quality in Medicina Clínica, in International Congress on Peer Review in Biomedical Publication, Barcelona, Spain.Google Scholar
  143. 143.
    Lukic, I., and Marušic, M. (2001) Appointment of statistical editor and quality of statistics in a small medical journal, Croat Med J 42, 500–503.PubMedGoogle Scholar
  144. 144.
    Schriger, D., Cooper, R., Wears, R., and Waeckerle, J. (2001) The effect of dedicated methodology/statistical review on published manuscript quality, in Fourth International Congress on Peer Review in Biomedical Publication, Barcelona, Spain.Google Scholar
  145. 145.
    Gardner, M., and Bond, J. (1990) An exploratory study of statistical assessment of papers published in the British Medical Journal, JAMA 263, 1355–1357.PubMedCrossRefGoogle Scholar
  146. 146.
    Schor, S., and Karten, I. (1966) Statistical evaluation of medical journal manuscripts, JAMA 195, 1123–1128.PubMedCrossRefGoogle Scholar
  147. 147.
    Goodman, S., Berlin, J., Fletcher, S., and Fletcher, R. (1994) Manuscript quality before and after peer review and editing at annals of internal medicine, Ann Intern Med 121, 11–21.PubMedGoogle Scholar
  148. 148.
    George, S. (1985) Statistics in medical journals: A survey of current policies and proposal for editors, Med Pediatr Oncol 13, 109–112.PubMedCrossRefGoogle Scholar
  149. 149.
    Goodman, S., Altman, D., and George, S. (1998) Statistical reviewing policies of medical journals: Caveat lector?, J Gen Intern Med 13, 753–756.PubMedCrossRefGoogle Scholar
  150. 150.
    Cobo, E., Selva-O’Callagham, A., Ribera, J. M., Cardellach, F., and Dominguez, R. (2007) Statistical reviewers improve reporting in biomedical articles: A randomized trial, PLoS ONE 2, e332.PubMedCrossRefGoogle Scholar
  151. 151.
    Ransohoff, D. (2005) Bias as a threat to the validity of cancer molecular-marker research, Nat Rev Cancer 5, 142–149.PubMedCrossRefGoogle Scholar
  152. 152.
    Simera, I., Altman, D., Moher, D., Schulz, K., and Hoey, J. (2008) Guidelines for reporting health research: The EQUATOR network’s survey of guideline, PLoS Med 5, 869–874.CrossRefGoogle Scholar
  153. 153.
    Altman, D. G. (2005) Endorsement of the CONSORT statement by high impact medical journals: Survey of instructions for authors, BMJ 330, 1056–1057.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Madhu Mazumdar
    • 1
  • Samprit Banerjee
    • 1
  • Heather L. Van Epps
    • 2
  1. 1.Division of Biostatistics and Epidemiology, Department of Public HealthWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Journal of Experimental Medicine, Rockefeller University PressNew YorkUSA

Personalised recommendations