Advertisement

Methods for Combining Multiple Genome-Wide Linkage Studies

  • Trecia A. Kippola
  • Stephanie A. Santorico
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 620)

Abstract

Cardiovascular disease, metabolic syndrome, schizophrenia, diabetes, bipolar disorder, and autism are a few of the numerous complex diseases for which researchers are trying to decipher the genetic composition. One interest of geneticists is to determine the quantitative trait loci (QTLs) that underlie the genetic portion of these diseases and their risk factors. The difficulty for researchers is that the QTLs underlying these diseases are likely to have small to medium effects which will necessitate having large studies in order to have adequate power. Combining information across multiple studies provides a way for researchers to potentially increase power while making the most of existing studies.

Here, we will explore some of the methods that are currently being used by geneticists to combine information across multiple genome-wide linkage studies. There are two main types of meta-analyses: (1) those that yield a measure of significance, such as Fisher’s p-value method along with its extensions/modifications and the genome search meta-analysis (GSMA) method, and (2) those that yield a measure of a common effect size and the corresponding standard error, such as model-based methods and Bayesian methods. Some of these methods allow for the assessment of heterogeneity. This chapter will conclude with a recommendation for usage.

Key words

Meta-analysis genome search meta-analysis combining multiple studies heterogeneity Fisher’s p-value method 

References

  1. 1.
    Glass, G. (1976) Primary, secondary and meta-analysis of research, Education Researcher 5, 3–8.Google Scholar
  2. 2.
    Fisher, R. (1925) Statistical Methods for Research Workers, 13 ed., Oliver & Loyd, London.Google Scholar
  3. 3.
    Edwards, K., Hutter, C., Wan, J., Kim, H., and Monks, S. (2008) Genome-wide linkage scan for metabolic syndrome: the GENNID study, Obesity (Silver Spring) 16, 1596–1601.CrossRefGoogle Scholar
  4. 4.
    Rosenthal, R. (1979) The file drawer problem and tolerance for null results, Psychological Bulletin 86, 638–641.CrossRefGoogle Scholar
  5. 5.
    Munafo, M. R., Clark, T. G., and Flint, J. (2004) Assessing publication bias in genetic association studies: evidence from a recent meta-analysis, Psychiatry Research 129, 39–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Attia, J., Thakkinstian, A., and D’Este, C. (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology, Journal of Clinical Epidemiology 56, 297–303.PubMedCrossRefGoogle Scholar
  7. 7.
    Laird, N. M., and Mosteller, F. (1990) Some statistical methods for combining experimental results, International Journal of Technological Assessment in Health Care 6, 5–30.CrossRefGoogle Scholar
  8. 8.
    McQueen, M. B., Devlin, B., Faraone, S. V., Nimgaonkar, V. L., Sklar, P., Smoller, J. W., Jamra, R. A., Albus, M., Bacanu, S. A., Baron, M., Barrett, T. B., Berrettini, W., Blacker, D., Byerley, W., Cichon, S., Coryell, W., Craddock, N., Daly, M. J., DePaulo, J. R., Edenberg, H. J., Foroud, T., Gill, M., Gilliam, T. C., Hamshere, M., Jones, I., Jones, L., Juo, S. H., Kelsoe, J. R., Lambert, D., Lange, C., Lerer, B., Liu, J. J., Maier, W., MacKinnon, J. D., McInnis, M. G., McMahon, F. J., Murphy, D. L., Nothen, M. M., Nurnberger, J. I., Pato, C. N., Pato, M. T., Potash, J. B., Propping, P., Pulver, A. E., Rice, J. P., Rietschel, M., Scheftner, W., Schumacher, J., Segurado, R., Van Steen, K., Xie, W. T., Zandi, P. P., and Laird, N. M. (2005) Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q, American Journal of Human Genetics 77, 582–595.PubMedCrossRefGoogle Scholar
  9. 9.
    Lander, E., and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nature Genetics 11, 242–247.CrossRefGoogle Scholar
  10. 10.
    Greenwood, T. A., Libiger, O., Kardia, S., Hanis, C., Morrison, A. C., Gu, C. C., Rice, T., Miller, M., Turner, S. T., Myers, R. H., Grove, J., Hsiao, C.-F., Weder, A. B., and Schork, N. J. (2007) Comprehensive linkage and linkage heterogeneity analysis of 4344 sibling pairs affected with hypertension from the Family Blood Pressure Program, Genetic Epidemiology 31, 195–210.PubMedCrossRefGoogle Scholar
  11. 11.
    Carter, K. W., Pluzhnikov, A., Timms, A. E., Miceli-Richard, C., Bourgain, C., Wordsworth, B. P., Jean-Pierre, H., Cox, N. J., Palmer, L. J., Breban, M., Reveille, J. D., and Brown, M. A. (2007) Combined analysis of three whole genome linkage scans for ankylosing spondylitis, Rheumatology 46, 763–771.PubMedCrossRefGoogle Scholar
  12. 12.
    Johanneson, N., Steinsson, K., Lindqvist, A. K., Kristjansdottir, H., Grondal, G., Sandino, S., Tjernstrom, F., Sturfelt, G., Granados-Arriola, J., Alcocer-Varela, J., Lundberg, I., Jonasson, I., Truedsson, L., Svenungssons, E., Klareskog, L., Alarcon-Segovia, D., Gyllensten, U. B., and Alarcon-Riquelme, M. E. (1999) A comparison of genome-scans performed in multicase families with systemic lupus erythematosus from different population groups, Journal of Autoimmunity 13, 137–141.PubMedCrossRefGoogle Scholar
  13. 13.
    Hartung, K., Fontana, A., Klar, M., Krippner, H., Jorgens, K., Lang, B., Peter, H. H., Pichler, W. J., Schendel, D., Robin-Winn, M., and Deicher, H. (1989) Associations of class I, II, and III MHC-gene products with systemic lupus erythematosus: results of a central European multicenter study, Rheumatology International 9, 13–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Light, R. J., and Smith, P. V. (1971) Accumulating evidence: procedures for resolving contradictions among different research studies, Harvard Educational Review 41, 429–471.Google Scholar
  15. 15.
    Hedges, L. V., and Olkin, I. (1985) Statistical Methods for Meta-Analysis, Academic Press, New York.Google Scholar
  16. 16.
    Edgington, E. (1972) An additive model for combining probability values from independent experiments, Journal of Psychology 80, 351–363.CrossRefGoogle Scholar
  17. 17.
    Iyengar, S. K., Abboud, H. E., Goddard, K. A. B., Saad, M. F., Adler, S. G., Arar, N. H., Bowden, D. W., Duggirala, R., Elston, R. C., Hanson, R. L., Ipp, E., Kao, W. H. L., Kimmel, P. L., Klag, M. J., Knowler, W. C., Meoni, L. A., Nelson, R. G., Nicholas, S. B., Pahl, M. V., Parekh, R. S., Quade, S. R. E., Rich, S. S., Rotter, J. I., Scavini, M., Schelling, J. R., Sedor, J. R., Sehgal, A. R., Shah, V. O., Smith, M. W., Taylor, K. D., Winkler, C. A., Zager, P. G., Freedman, B. I., on behalf of the Family Investigation of Nephropathy and Diabetes Research Group. (2007) Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The Family Investigation of Nephropathy and Diabetes (FIND), Diabetes 56, 1577–1585.PubMedCrossRefGoogle Scholar
  18. 18.
    Province, M. A. (2001) The significance of not finding a gene, The American Journal of Human Genetics 69, 660–663.CrossRefGoogle Scholar
  19. 19.
    Badner, J. A., and Gershon, E. S. (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia, Molecular Psychiatry 7, 405–411.PubMedCrossRefGoogle Scholar
  20. 20.
    Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H., and Weir, B. S. (2002) Truncated product method for combining P-values, Genetic Epidemiology 22, 170–185.PubMedCrossRefGoogle Scholar
  21. 21.
    Loesgen, S., Dempfle, A., Golla, A., and Bickeboller, H. (2001) Weighting schemes in pooled linkage analysis, Genetic Epidemiology 21, S142–S147.PubMedGoogle Scholar
  22. 22.
    Stouffer, S., Suchman, E., DeVinney, L., Star, S., and Williams, R. J. (1949) Adjustment during army life, in The American Soldier, Princeton University Press, Princeton.Google Scholar
  23. 23.
    Haseman, J., and Elston, R. (1972) The investigation of linkage between a quantitative trait and a marker locus, Behaviour Genetics 2 (1), 3–19.Google Scholar
  24. 24.
    Province, M. A., Kardia, S. L. R., Ranade, K., Rao, D. C., Thiel, B. A., Cooper, R. S., Risch, N., Turner, S. T., Cox, D. R., Hunt, S. C., Weder, A. B., and Boerwinkle, E. (2003) A meta-analysis of genome-wide linkage scans for hypertension: The National Heart, Lung and Blood Institute Family Blood Pressure Program, American Journal of Hypertension 16, 144–147.PubMedCrossRefGoogle Scholar
  25. 25.
    Rice, T., Rankinen, T., Province, M. A., Chagnon, Y. C., Perusse, L., Borecki, I. B., Bouchard, C., and Rao, D. C. (2000) Genome-wide linkage analysis of systolic and diastolic blood pressure : The Quebec Family Study, Circulation 102, 1956–1963.PubMedCrossRefGoogle Scholar
  26. 26.
    Atwood, L. D., Samollow, P. B., Hixson, J. E., Stern, M. P., and MacCluer, J. W. (2001) Genome-wide linkage analysis of blood pressure in Mexican Americans, Genetic Epidemiology 20, 373–382.PubMedCrossRefGoogle Scholar
  27. 27.
    Rice, T., Cooper, R. S., Wu, X. D., Bouchard, C., Rankinen, T., Rao, D. C., Jaquish, C. E., Fabsitz, R. R., and Province, M. A. (2006) Meta-analysis of genome-wide scans for blood pressure in African American and Nigerian samples, American Journal of Hypertension 19, 270–274.PubMedCrossRefGoogle Scholar
  28. 28.
    Badner, J. A., and Gershon, E. (2002) Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7, Molecular Psychiatry 7, 56–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Wise, L. H., and Lewis, C. M. (1999) A method for meta-analysis of genome searches: application to simulated data, Genetic Epidemiology 17, S767–S771.PubMedGoogle Scholar
  30. 30.
    Forabosco, P., Ng, M. Y. M., Bouzigon, E., Fisher, S. A., Levinson, D. F., and Lewis, C. M. (2007) Data acquisition for meta-analysis of genome-wide linkage studies using the genome search meta-analysis method, Human Heredity 64, 74–81.PubMedCrossRefGoogle Scholar
  31. 31.
    Wise, L. H., Lanchbury, J. S., and Lewis, C. N. (1999) Meta-analysis of genome searches, Annals of Human Genetics 63, 263–272.PubMedCrossRefGoogle Scholar
  32. 32.
    Choi, S. J., Rho, Y. H., Ji, J. D., Song, G. G., and Lee, Y. H. (2006) Genome scan meta-analysis of rheumatoid arthritis, Rheumatology 45, 166–170.PubMedCrossRefGoogle Scholar
  33. 33.
    Saunders, C. L., Chiodini, B. D., Sham, P., Lewis, C. M., Abkevich, V., Adeyemo, A. A., de Andrade, M., Arya, R., Berenson, G. S., Blangero, J., Boehnke, M., Borecki, I. B., Chagnon, Y. C., Chen, W., Comuzzie, A. G., Deng, H. W., Duggirala, R., Feitosa, M. F., Froguel, P., Hanson, R. L., Hebebrand, J., Huezo-Dias, P., Kissebah, A. H., Li, W. D., Luke, A., Martin, L. J., Nash, M., Ohman, M., Palmer, L. J., Peltonen, L., Perola, M., Price, R. A., Redline, S., Srinivasan, S. R., Stern, M. P., Stone, S., Stringham, H., Turner, S., Wijmenga, C., and Collier, D. A. (2007) Meta-analysis of genome-wide linkage studies in BMI and obesity, Obesity 15, 2263–2275.PubMedCrossRefGoogle Scholar
  34. 34.
    Zintzaras, E., and Ioannidis, J. P. A. (2005) Heterogeneity testing in meta-analysis of genome searches, Genetic Epidemiology 28, 123–137.PubMedCrossRefGoogle Scholar
  35. 35.
    Cochran, W. (1954) The combination of estimates from different experiments, Biometrics 10, 101–129.CrossRefGoogle Scholar
  36. 36.
    Lewis, C. M., and Levinson, D. E. (2006) Testing for genetic heterogeneity in the genome search meta-analysis method, Genetic Epidemiology 30, 348–355.PubMedCrossRefGoogle Scholar
  37. 37.
    Malhotra, A., Coon, H., Feitosa, M. F., Li, W. D., North, K. E., Price, R. A., Bouchard, C., Hunt, S. C., Wolford, J. K., and American Diabetes Association, G. S. G. (2005) Meta-analysis of genome-wide linkage studies for quantitative lipid traits in African Americans, Human Molecular Genetics 14, 3955–3962.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee, Y. H., Rho, Y. H., Choi, S. J., Ji, J. D., and Song, G. G. (2006) Meta-analysis of genome-wide linkage studies for bone mineral density, Journal of Human Genetics 51, 480–486.PubMedCrossRefGoogle Scholar
  39. 39.
    Fisher, S. A., Abecasis, G. R., Yashar, B. M., Zareparsi, S., Swaroop, A., Iyengar, S. K., Klein, B. E. K., Klein, R., Lee, K. E., Majewski, J., Schultz, D. W., Klein, M. L., Seddon, J. M., Santangelo, S. L., Weeks, D. E., Conley, Y. P., Mah, T. S., Schmidt, S., Haines, J. L., Pericak-Vance, M. A., Gorin, M. B., Schulz, H. L., Pardi, F., Lewis, C. M., and Weber, B. H. F. (2005) Meta-analysis of genome scans of age-related macular degeneration, Human Molecular Genetics 14, 2257–2264.PubMedCrossRefGoogle Scholar
  40. 40.
    Zintzaras, E., and Kitsios, G. (2006) Identification of chromosomal regions linked to premature myocardial infarction: a meta-analysis of whole-genome searches, Journal of Human Genetics 51, 1015–1021.PubMedCrossRefGoogle Scholar
  41. 41.
    Trikalinos, T. A., Karvouni, A., Zintzaras, E., Ylisaukko-oja, T., Peltonen, L., Jarvela, I., and Ioannidis, J. P. A. (2006) A heterogeneity-based genome search meta-analysis for autism-spectrum disorders, Molecular Psychiatry 11, 29–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Gu, C., Province, M., Todorov, A., and Rao, D. C. (1998) Meta-analysis methodology for combining non-parametric sibpair linkage results: genetic homogeneity and identical markers, Genetic Epidemiology 15, 609–626.PubMedCrossRefGoogle Scholar
  43. 43.
    Risch, N., and Zhang, H. (1995) Extreme discordant sib pairs for mapping quantitative trait loci in humans, Science 268 (5217), 1584–1589.Google Scholar
  44. 44.
    Blackwelder, W., and Elston, R. (1985) A comparison of sib-pair linkage tests for disease susceptibility loci, Genetic Epidemiology 2, 85–97.PubMedCrossRefGoogle Scholar
  45. 45.
    Heijmans, B. T., Beekman, M., Putter, H., Lakenberg, N., van der Wijk, H. J., Whitfield, J. B., Posthuma, D., Pedersen, N. L., Martin, N. G., Boomsma, D. I., and Slagboom, P. E. (2005) Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions, European Journal of Human Genetics 13, 1143–1153.PubMedCrossRefGoogle Scholar
  46. 46.
    Rice, J. P., Rochberg, N., Neuman, R. J., Saccone, N. L., and Liu, K. Y., Zhang, X., and Culverhouse, R. (1999) Covariates in linkage analysis, Genetic Epidemiology 17(Suppl 1), S691–S695.PubMedGoogle Scholar
  47. 47.
    Waldman, I. D., and Robinson, B. F. (2001) Meta-analysis of sib pair linkage studies of asthma and the interleukin-9 gene (IL9), Genetic Epidemiology 21, S109–S114.PubMedGoogle Scholar
  48. 48.
    Biswas, S., and Lin, S. (2007) Incorporating covariates in mapping heterogeneous traits: a hierarchical model using empirical Bayes estimation, Genetic Epidemiology 31, 684–696.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith, C. A. B. (1963) Testing for heterogeneity of recombination fraction values in human genetics, Annals of Human Genetics 27, 175–182.PubMedCrossRefGoogle Scholar
  50. 50.
    Ott, J. (1999) Analysis of Human Genetic Linkage, The Johns Hopkins University Press, Baltimore, MD.Google Scholar
  51. 51.
    Lin, S. L., and Biswas, S. (2004) On modeling locus heterogeneity using mixture distributions, Bmc Genetics 5, 29.Google Scholar
  52. 52.
    Diebolt, J., and Ip, E. (1996) Stochastic EM: method and application, in Markov Chain Monte Carlo in Practice (Gilks, W., Richardson, S., and Spiegelhalter, D., Eds.), pp. 259–273, Chapman & Hall, London, UK.Google Scholar
  53. 53.
    Raftery, A. (1996) Hypothesis testing and model selection, in Markov Chain Monte Carlo in Practice (Gilks, W., Richardson, S., and Spiegelhalter, D., Eds.), pp. 163–187, Chapman & Hall, London, UK.Google Scholar
  54. 54.
    Dempfle, A., and Loesgen, S. (2004) Meta-analysis of linkage studies for complex diseases: an overview of methods and a simulation study, Annals of Human Genetics 68, 69–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Hedges, L. V., and Olkin, I. (1980) Vote-counting methods in research synthesis, Psychological Bulletin 88, 359–369.CrossRefGoogle Scholar
  56. 56.
    Levinson, D. F., Levinson, M. D., Segurado, R., and Lewis, C. M. (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: Methods and power analysis, American Journal of Human Genetics 73, 17–33.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Trecia A. Kippola
    • 1
  • Stephanie A. Santorico
    • 2
  1. 1.Department of StatisticsOklahoma State UniversityStillwaterUSA
  2. 2.Department of Mathematical and Statistical SciencesUniversity of ColoradoDenverUSA

Personalised recommendations