Skip to main content

Real-Time Monitoring of Cellular Responses to Carbon Nanotubes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 625))

Abstract

Dynamic cellular responses to carbon nanotubes were monitored by a real-time cell electronic sensing assay. This approach is based on the parallel impedance measurement of attached cells using electronic sensors integrated in wells of 96-well E-plate. It measures the real-time multiparameter index of cell growth named cell index (CI), which reflects the cell proliferation, morphology, attachment, and spreading. The label-free, real-time, and high-throughput assay overcomes many drawbacks in current optical based cytotoxicity assays in carbon nanotubes research, and enables dynamic monitoring of cellular responses to carbon nanotubes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Son YW, Ihm J, Cohen ML, Louie SG, Choi HJ (2005) Electrical switching in metallic carbon nanotubes. Phys Rev Lett 95:4

    Google Scholar 

  2. Zavaleta C, de la Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS (2008) Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett 8:2800-2805

    Article  CAS  PubMed  Google Scholar 

  3. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344-353

    Article  CAS  PubMed  Google Scholar 

  4. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44:6358-6362

    Article  CAS  Google Scholar 

  5. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FQF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448-2464

    Article  CAS  PubMed  Google Scholar 

  6. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63

    Article  CAS  PubMed  Google Scholar 

  7. Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207-212

    CAS  PubMed  Google Scholar 

  8. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313-320

    Article  CAS  PubMed  Google Scholar 

  9. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K, Watanabe M (1995) Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produces a water-soluble formazan dye. In Vitro Toxicol 8:187-190

    CAS  Google Scholar 

  10. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD Jr, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Nati Acad Sci USA 88:3671-3675

    Article  CAS  Google Scholar 

  11. Guntherberg H, Rost J (1966) The true oxidized glutathione content of red blood cells obtained by new enzymic and paper chromatographic methods. Anal Biochem 15:205-210

    Article  CAS  PubMed  Google Scholar 

  12. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271-279

    Article  CAS  PubMed  Google Scholar 

  13. Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261-1268

    Article  CAS  PubMed  Google Scholar 

  14. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591-592

    Article  CAS  PubMed  Google Scholar 

  15. Solly K, Wang XB, Xu X, Strulovici B, Zheng W (2004) Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2:363-372

    Article  CAS  PubMed  Google Scholar 

  16. Atienza JM, Zhu J, Wang XB, Xu X, Abassi Y (2005) Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J Biomol Screen 10:795-805

    Article  CAS  PubMed  Google Scholar 

  17. Xing JZ, Zhu LJ, Jackson JA, Gabos S, Sun XJ, Wang XB, Xu X (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154-161

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Wang XB, Xu X, Abassi YA (2006) Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods 309:25-33

    Article  CAS  PubMed  Google Scholar 

  19. Abassi YA, Jackson JA, Zhu J, O’Connell J, Wang XB, Xu X (2004) Label-free, real-time monitoring of IgE-mediated mast cell activation on microelectronic cell sensor arrays. J Immunol Methods 292:195-205

    Article  CAS  PubMed  Google Scholar 

  20. Yu N, Atienza JM, Bernard J, Blanc S, Zhu J, Wang X, Xu X, Abassi YA (2006) Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors. Anal Chem 78:35-43

    Article  CAS  PubMed  Google Scholar 

  21. Huang L, Xie L, Boyd JM, Li XF (2008) Cell-electronic sensing of particle-induced cellular responses. Analyst 133:643-648

    Article  CAS  PubMed  Google Scholar 

  22. Zhou H, Mu Q, Gao N, Liu A, Xing Y, Gao S, Zhang Q, Qu G, Chen Y, Liu G, Zhang B, Yan B (2008) A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett 8:859-865

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mu, Q., Zhai, S., Yan, B. (2010). Real-Time Monitoring of Cellular Responses to Carbon Nanotubes. In: Balasubramanian, K., Burghard, M. (eds) Carbon Nanotubes. Methods in Molecular Biology, vol 625. Humana Press. https://doi.org/10.1007/978-1-60761-579-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-579-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-577-4

  • Online ISBN: 978-1-60761-579-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics