Skip to main content

Effects of Carbon Nanotubes on the Proliferation and Differentiation of Primary Osteoblasts

  • Protocol
  • First Online:
Carbon Nanotubes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 625))

Abstract

This chapter provides a detailed protocol for studying the effects of carbon nanotubes (CNTs) on the proliferation, differentiation, adipocytic transdifferentiation, and mineralization of primary osteoblasts. SWNTs, DWNTs, and MWNTs with the same mean length and various diameters were shown to reduce the viability of osteoblasts and inhibit the adipocytic transdifferentiation in both time- and dose-dependent manners. The order of inhibition effect is SWNTs > DWNTs > MWNTs. CNTs were found to inhibit the formation of mineralized nodules greatly and dose-dependently during the final stage of osteoblast differentiation, causing a 50% decrease in the formation of mineralized nodules at the concentration of 50 μg/mL. The expression of important proteins such as Runx-2 and Col-I in osteoblasts was also greatly inhibited by the CNTs. TEM results revealed that the effects on cellular behavior may be exerted by the CNTs from in- and outside of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen RJ, Zhan YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838-3839

    Article  CAS  PubMed  Google Scholar 

  2. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793-2799

    Article  CAS  Google Scholar 

  3. Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, Yan XY (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7:239-242

    Article  CAS  PubMed  Google Scholar 

  4. Cui DX, Tian FR, Kong Y, Titushikin I, Gao HJ (2004) Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 15:154-157

    Article  CAS  Google Scholar 

  5. Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez A (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanopart Res 6:241-251

    Article  CAS  Google Scholar 

  6. Donaldson K, Li XY, Mac NW (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29(5/6):553-560

    Article  CAS  Google Scholar 

  7. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622-627

    Article  CAS  PubMed  Google Scholar 

  8. Wang HF, Wang J, Deng XY, Sun HF, Shi ZJ, Gu ZN, Liu YF, Zhao YL (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4(8):1019-1024

    Article  CAS  PubMed  Google Scholar 

  9. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 66:1909-1926

    Article  CAS  Google Scholar 

  10. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378-1383

    Article  CAS  PubMed  Google Scholar 

  11. Mattson MP, Haddon RC, Rao AM (2001) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175-182

    Article  Google Scholar 

  12. Yi CQ, Fong CC, Chen WW, Qi SJ, Tzang CH, Lee ST, Yang MS (2007) Interactions between carbon nanotubes and DNA polymerase and restriction endonucleases. Nanotechnology 18:025102

    Article  Google Scholar 

  13. Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73-85

    Article  CAS  PubMed  Google Scholar 

  14. Gutwein LG, Webster TJ (2002) Osteoblast and chondrocyte proliferation in the presence of alumina and titania nanoparticles. J Nanopart Res 4:231-238

    Article  CAS  Google Scholar 

  15. Zhang DW, Zhang JC, Chen Y, Yang MS, Yao XS (2007) Methods for anti-osteoporosis drug screening in vitro. Chin Pharm J 42(3):161-164

    CAS  Google Scholar 

  16. Zhang JC, Li XX, Xu SJ, Wang K, Yu SF, Lin Q (2004) Effects of rare earth ions on proliferation, differentiation and function expression of cultured osteoblasts in vitro. Prog Nat Sci 14(4):404-409

    Article  Google Scholar 

  17. Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448-2464

    Article  CAS  PubMed  Google Scholar 

  18. Yang S, Wie D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 18:705-715

    Article  CAS  PubMed  Google Scholar 

  19. Park JH, Park BH, Kim HK, Park TS, Baek HS (2002) Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol 192:197-203

    CAS  PubMed  Google Scholar 

  20. Zhang DW, Yi CQ, Zhang JC, Chen Y, Yao XS, Yang MS (2007) The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Nanotechnology 18:475102

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (NSFC), the Key Laboratory Scheme of Science and Technology Bureau of Shenzhen Municipal Government, BTC operation fund (CityU project No. 9683001) and City University of Hong Kong (Project No.7002100) for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, D., Yi, C., Qi, S., Yao, X., Yang, M. (2010). Effects of Carbon Nanotubes on the Proliferation and Differentiation of Primary Osteoblasts. In: Balasubramanian, K., Burghard, M. (eds) Carbon Nanotubes. Methods in Molecular Biology, vol 625. Humana Press. https://doi.org/10.1007/978-1-60761-579-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-579-8_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-577-4

  • Online ISBN: 978-1-60761-579-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics