Skip to main content

Covalently Linked Deoxyribonucleic Acid with Multi-walled Carbon Nanotubes: Synthesis and Characterization

  • Protocol
  • First Online:
Carbon Nanotubes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 625))

  • 1439 Accesses

Abstract

In this chapter, a multi-step protocol for covalently linking functionalized multi-walled carbon nanotubes (MWCNT) to deoxyribonucleic acid (DNA) oligonucleotides is provided. X-ray photoelectron spectroscopy (XPS) is used to characterize the initially formed amine-terminated MWCNTs, to which DNA is covalently anchored. Atomic force microscopy (AFM) investigation of the DNA-MWCNT conjugates reveals that the chemical functionalization occurs at both the ends and sidewalls of the nanotubes. The described methodology represents an important step toward the realization of DNA-guided self-assembly for carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56-58

    Article  CAS  Google Scholar 

  2. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220-222

    Article  CAS  Google Scholar 

  3. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838-3839

    Article  CAS  PubMed  Google Scholar 

  4. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors. Adv Mater 17:2793-2799

    Article  CAS  Google Scholar 

  5. Gao LZ, Nie L, Wang TH, Qin YJ, Guo ZX, Yang DL, Yan XY (2006) Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem 7:239-242

    Article  CAS  PubMed  Google Scholar 

  6. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078-1081

    Article  CAS  PubMed  Google Scholar 

  7. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc 124:2856-2857

    Article  CAS  PubMed  Google Scholar 

  8. Soto CM, Srinivasan A, Ratna BR (2002) Controlled assembly of mesoscale structures using DNA as molecular bridges. J Am Chem Soc 124:8508-8509

    Article  CAS  PubMed  Google Scholar 

  9. Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10:701-703

    Article  CAS  Google Scholar 

  10. Shim M, Kan NWS, Chen RJ, Dai HJ (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285-288

    Article  CAS  Google Scholar 

  11. Sarah EB, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett 2:1413-1417

    Article  Google Scholar 

  12. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie, MN

    Google Scholar 

  13. Lin Z, Strother T, Cai W, Cao X, Smith LM, Hamers RJ (2002) DNA attachment and hybridization at the silicon (100) surface. Langmuir 18:788-796

    Article  CAS  Google Scholar 

  14. Chen WW, Tzang CH, Tang JX, Yang MS, Lee ST (2005) Covalently linked deoxyribonucleic acid with multiwall carbon nanotubes: synthesis and characterization. Appl Phys Lett 86:103114

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of Key Laboratory Funding Scheme of Shenzhen Municipal Government, BTC operation fund (CityU Project No. 9683001) and City University of Hong Kong (Project No. 7002100) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chen, W., Yi, C., Chi-Hung, T., Lee, ST., Yang, M. (2010). Covalently Linked Deoxyribonucleic Acid with Multi-walled Carbon Nanotubes: Synthesis and Characterization. In: Balasubramanian, K., Burghard, M. (eds) Carbon Nanotubes. Methods in Molecular Biology, vol 625. Humana Press. https://doi.org/10.1007/978-1-60761-579-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-579-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-577-4

  • Online ISBN: 978-1-60761-579-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics