Skip to main content

Effect of Carbon Nanotubes on HepG2 Adhesion and Spreading

  • Protocol
  • First Online:
Carbon Nanotubes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 625))

  • 1435 Accesses

Abstract

There are several in vitro cell models for studying the interactions of carbon nanotubes (CNTs) with biological systems. This chapter provides a detailed protocol for studying the effects of CNTs on cell adhesion and spreading. The protocol is a combination of methods of electron microscopy, cell biology, and molecular biology, focusing on the detection of the cell morphology and cellular responses related to cell adhesion and spreading process, including the observation of cellular skeletal changes upon cell adhesion, the measurement of the expression level changes of cell adhesion, and the spreading specific genes and proteins upon exposure to CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378-1383

    Article  CAS  PubMed  Google Scholar 

  2. Cui DX, Tian FR, Ozkan CS, Wang M, Gao HJ (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73-85

    Article  CAS  PubMed  Google Scholar 

  3. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human ­epidermal keratinocytes. Toxicol Lett 155:377-384

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Y, Ran T, Li YG, Guo JX, Li WX (2006) Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium. Nanotechnology 17:4668-4674

    Article  CAS  Google Scholar 

  5. Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M (2004) Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth. Nano Lett 4:2233-2236

    Article  CAS  Google Scholar 

  6. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344-353

    Article  CAS  PubMed  Google Scholar 

  7. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube -based gene delivery vectors. J Am Chem Soc 127:4388-4396

    Article  CAS  PubMed  Google Scholar 

  8. Park SY, Namgung S, Kim B, Im J, Kim JY, Sun K, Lee KB, Nam JM, Park Y, Hong S (2007) Carbon nanotube monolayer patterns for directed growth of mesenchymal stem cells. Adv Mater 19:2530-2534

    Article  CAS  Google Scholar 

  9. Ben-Ze’ev A, Robinson GS, Bucher NLR, Farmer SR (1988) Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci 85:2161-2165

    Article  PubMed  Google Scholar 

  10. Hansen LK, Mooney DJ, Vacanti JP, Ingber DE (1994) Integrin binding and cell spreading on extracellular matrix act at different points in the cell cycle to promote hepatocyte growth. Mol Biol Cell 5:967-975

    CAS  PubMed  Google Scholar 

  11. Fassett J, Toblot D, Hansen LK (2006) Type I collagen structure regulates cell morphology and EGF signaling in primary rat hepatocytes through cAMP-dependent protein kinase A. Mol Biol Cell 17:345-356

    Article  CAS  PubMed  Google Scholar 

  12. Isobe H, Tanaka T, Maeda R, Noiri E, Solin N, Yudasaka M, Iijima S, Nakamura E (2006) Preparation, purification, characterization, and cytotoxicity assessment of water-soluble, transition-metal-free carbon nanotube aggregates. Angew Chem Int Ed 45:6676-6680

    Article  CAS  Google Scholar 

  13. Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261-1268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by City University of Hong Kong (Project No.7002100), BTC operation fund (CityU project No. 9683001) and the Key Laboratory Fund of Shenzhen Municipal Government, China.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Qi, S., Yi, C., Zhang, D., Yang, M. (2010). Effect of Carbon Nanotubes on HepG2 Adhesion and Spreading. In: Balasubramanian, K., Burghard, M. (eds) Carbon Nanotubes. Methods in Molecular Biology, vol 625. Humana Press. https://doi.org/10.1007/978-1-60761-579-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-579-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-577-4

  • Online ISBN: 978-1-60761-579-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics