Skip to main content

Cell Trafficking of Carbon Nanotubes Based on Fluorescence Detection

  • Protocol
  • First Online:
Carbon Nanotubes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 625))

Abstract

Cell trafficking of carbon nanotubes (CNTs) is an area of scientific inquiry that has great implications in medicine, biosensing, and environmental science and engineering. The essence of this inquiry resides in the interaction of carbon nanostructures and cell membranes, regulated by the laws of molecular cell biology and the physiochemical properties of the nanostructures. Of equal importance to this inquiry is a description of cellular responses to the integration of man-made materials; yet, how cellular responses may invoke whole-organism level reaction remains unclear. In this chapter, we show three experimental studies, which may be beneficial to obtaining such an understanding. Among the reservoir of methodologies, which have proved of merit, we focus our attention on fluorescence microscopy, one of the most powerful and yet least invasive means of probing nanoparticles in biological systems. Especially, we present the method of fluorescence energy transfer induced between a lysophospholipid molecule and a single-walled CNT upon cellular uptake, and describe coating nanotubes with RNA and suspending fullerenes with phenolic acids for facilitating their translocation across cell membranes and shuttling between cell organelles. Finally, we comment on the perspective of using molecular simulations for facilitating and guiding such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Söderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864-11865

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010-3011

    Article  CAS  PubMed  Google Scholar 

  3. Ke PC, Qiao R (2007) Carbon nanomaterials in biological systems. J Phys Condens Matter 19(373101):1-25

    Google Scholar 

  4. Kam NWS, Jessop TC, Wender PA, Dai HJ (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850-6851

    Article  CAS  Google Scholar 

  5. Pantarotto D, Singh R, McCarthy D, Erhardt M, Braind J-P, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43:5242-5246

    Article  CAS  PubMed  Google Scholar 

  6. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL, Ke PC (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4:2473-2477

    Article  CAS  Google Scholar 

  7. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108-113

    Article  CAS  PubMed  Google Scholar 

  8. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105:1410-1415

    Article  CAS  PubMed  Google Scholar 

  9. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotube introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423-428

    Google Scholar 

  10. Zhu L, Chang DW, Dai L, Hong Y (2007) DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett 7:3592-3597

    Article  CAS  PubMed  Google Scholar 

  11. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26-49

    Article  CAS  PubMed  Google Scholar 

  12. Scheringer M (2008) Environmental risks of nanomaterials. Nat Nanotechnol 3:322-323

    Article  CAS  PubMed  Google Scholar 

  13. Tsyboulski DA, Bachilo SM, Weisman RB (2005) Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett 5:975-979

    Article  CAS  PubMed  Google Scholar 

  14. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: toward long-term labels and optical sensors. Adv Mater 17:2793-2799

    Article  CAS  Google Scholar 

  15. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719-726

    Article  CAS  PubMed  Google Scholar 

  16. Ha T, Enderle Th, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264-6268

    Article  CAS  PubMed  Google Scholar 

  17. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assisted optical spectra of single-walled carbon nanotubes. Science 298:2361-2366

    Article  CAS  PubMed  Google Scholar 

  18. Guldi DM, Marcaccio M, Paolucci D, Paolucci F, Tagmatarchis N, Tasis D, Vazquez E, Prato M (2003) Single-wall carbon nanotube-ferrocene nanohybrids: observing intramolecular electron transfer in functionalized SWNTs. Angew Chem Int Ed Engl 42:4206-4209

    Article  CAS  PubMed  Google Scholar 

  19. Zhu W, Minami N, Kazaoui S, Kim YJ (2003) Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states. Mater Chem 13:2196-2201

    Article  CAS  Google Scholar 

  20. Wu Y, Lu Q, Hudson JS, Mount AS, Moore JM, Rao AM, Alexov E, Ke PC (2006) Coating single-walled carbon nanotubes with lysophospholipids. J Phys Chem B 110:2475-2478

    Article  CAS  PubMed  Google Scholar 

  21. Qiao R, Ke PC (2006) Lipid-carbon nanotube self-assembly in aqueous solution. J Am Chem Soc 128:13656-13657

    Article  CAS  PubMed  Google Scholar 

  22. Lin S, Keskar G, Wu Y, Wang X, Mount AS, Klaine SJ, Moore JM, Rao AM, Ke PC (2006) Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Appl Phys Lett 89(143118):1-3

    Google Scholar 

  23. Salonen E, Lin S, Reid ML, Allegood MS, Wang X, Rao AM, Vattulainen I, Ke PC (2008) Real-time translocation of fullerene reveals cell contraction. Small 4(11):1986-1992

    Google Scholar 

  24. Li L, Davande H, Bedrov D, Smith GD (2007) A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer. J Phys Chem B 111:4067-4072

    Article  CAS  PubMed  Google Scholar 

  25. Qiao R, Roberts AP, Mount AS, Klaine SJ, Ke PC (2007) Translocation of C60 and its derivatives across a lipid bilayer. Nano Lett 7:614-619

    Article  CAS  PubMed  Google Scholar 

  26. Bedrov D, Smith GD, Davande H, Li L (2008) Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J Phys Chem B 112:2078-2084

    Article  CAS  PubMed  Google Scholar 

  27. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750-760

    Article  CAS  Google Scholar 

  28. Wong-Ekkabut J, Baoukina S, Wannapong T, Tang IM, Tieleman DP, Monticelli L (2008) Computer simulation study of fullerene translocation through lipid membranes. Nat Nanotechnol 3:363-368

    Article  CAS  PubMed  Google Scholar 

  29. Lopez CF, Nielsen SO, Moore PB, Klein ML (2004) Understanding nature’s design for a nanosyringe. Proc Natl Acad Sci USA 101:4431-4434

    Article  CAS  PubMed  Google Scholar 

  30. Wallace EJ, Sansom MSP (2008) Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study. Nano Lett 8:2751-2756

    Article  CAS  PubMed  Google Scholar 

  31. Lindahl ER (2008) Molecular Dynamics. Methods Mol Biol 443:3-23

    Article  CAS  PubMed  Google Scholar 

  32. http://www.ks.uiuc.edu/Research/namd/

  33. http://lammps.sandia.gov/

  34. http://www.gromacs.org/

  35. Kartturen, http://www.apmaths.uwo.ca/∼mkarttu­//downloads.shtml

  36. Tieleman, http://moose.bio.ucalgary.ca/

  37. Feller, http://persweb/wabash.edu/facstaff/fellers/

  38. Dickey A, Faller R (2008) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95:2636-2646

    Article  CAS  PubMed  Google Scholar 

  39. http://www.jcrystal.com/products/wincnt/index.htm (September, 2008)

  40. Aksimentiev A, Schulten K (2004) Extending molecular modeling methodology to study insertion of membrane nanopores. Proc Natl Acad Sci USA 101:4337-4338

    Article  CAS  PubMed  Google Scholar 

  41. Ross RB, Mohanty S (2008) Multiscale simulation methods for nanomaterials. Wiley, Hoboken, NJ

    Google Scholar 

  42. Izvekov S, Voth G (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469-2473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ke thanks Drs. Emppu Salonen, Ilpo Vattulainen, Xi Wang, Yonnie Wu, and his students Sijie Lin and Jessica Moore for contributions instrumental to this presentation. The authors acknowledge financial support from NSF grants CBET-0736037 (PCK), CAREER CBET-0744040 (PCK), CBET-0403864 (MHL), and OCI-0749156 (MHL).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lamm, M.H., Ke, P.C. (2010). Cell Trafficking of Carbon Nanotubes Based on Fluorescence Detection. In: Balasubramanian, K., Burghard, M. (eds) Carbon Nanotubes. Methods in Molecular Biology, vol 625. Humana Press. https://doi.org/10.1007/978-1-60761-579-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-579-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-577-4

  • Online ISBN: 978-1-60761-579-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics