Skip to main content

Monitoring Neuropeptides In Vivo via Microdialysis and Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

Neuropeptides are important signaling molecules that regulate many essential physiological processes. Microdialysis offers a way to sample neuropeptides in vivo. When combined with liquid chromatography–mass spectrometry detection, many known and unknown neuropeptides can be identified from a live organism. This chapter describes sample preparation techniques and general strategies for the mass spectral analysis of neuropeptides collected via microdialysis sampling. Methods for the in vitro microdialysis of a neuropeptide standard as well as the in vivo microdialysis sampling of neuropeptides from a live crab are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Robinson, T.E. and Justice, J.B. (eds.) (1991) Microdialysis in the Neurosciences. Elsevier Science Publishing Company, London.

    Google Scholar 

  2. Skiebe, P. (2001) Neuropeptides are ubiquitous chemical mediators: using the stomatogastric nervous system as a model system. J. Exp. Biol. 204, 2035–2048.

    PubMed  CAS  Google Scholar 

  3. Nusbaum, M.P. and Beenhakker, M.P. (2002) A small-systems approach to motor pattern generation. Nature 417, 343–350.

    Article  PubMed  CAS  Google Scholar 

  4. Turrigiano, G.G. and Selverston, A.I. (1990) A cholecystokinin-like hormone activates a feeding-related neural circuit in lobster. Nature 344, 866–868.

    Article  PubMed  CAS  Google Scholar 

  5. Li, L., Kelley, W.P., Billimoria, C.P., Christie, A.E., Pulver, S.R., Sweedler, J.V., and Marder, E. (2003) Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J. Neurochem. 87, 642–656.

    Article  PubMed  CAS  Google Scholar 

  6. Messinger, D.I., Kutz, K.K., Le, T., Verley, D.R., Hsu, Y.W., Ngo, C.T., Cain, S.D., Birmingham, J.T., Li, L., and Christie, A.E. (2005) Identification and characterization of a tachykinin-containing neuroendocrine organ in the commissural ganglion of the crab Cancer productus. J. Exp. Biol. 208, 3303–3319.

    Article  PubMed  CAS  Google Scholar 

  7. DeKeyser, S.S., Kutz-Naber, K.K., Schmidt, J.J., Barrett-Wilt, G.A., and Li, L. (2007) Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J. Proteome Res. 6, 1782–1791.

    Article  PubMed  CAS  Google Scholar 

  8. Stemmler, E.A., Gardner, N.P., Guiney, M.E., Bruns, E.A., and Dickinson, P.S. (2006) The detection of red pigment-concentrating hormone (RPCH) in crustacean eyestalk tissues using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry: [M + Na]+ ion formation in dried droplet tissue preparations. J. Mass Spectrom. 41, 295–311.

    Article  PubMed  CAS  Google Scholar 

  9. Saideman, S.R., Ma, M., Kutz-Naber, K.K., Cook, A., Torfs, P., Schoofs, L., Li, L., and Nusbaum, M.P. (2007) Modulation of rhythmic motor activity by pyrokinin peptides. J. Neurophysiol. 97, 579–595.

    Article  PubMed  CAS  Google Scholar 

  10. Duo, J., Fletcher, H., and Stenken, J.A. (2006) Natural and synthetic affinity agents as microdialysis sampling mass transport enhancers: current progress and future perspectives. Biosens. Bioelectron. 22, 449–457.

    Article  PubMed  CAS  Google Scholar 

  11. Rojas, C., Nagaraja, N.V., and Derendorf, H. (2000) In vitro recovery of triamcinolone acetonide in microdialysis. Pharmazie 55, 659–662.

    PubMed  CAS  Google Scholar 

  12. Lanckmans, K., Sarre, S., Smolders, I., and Michotte, Y. (2008) Quantitative liquid chromatography/mass spectrometry for the analysis of microdialysates. Talanta 74, 458–469.

    Article  PubMed  CAS  Google Scholar 

  13. Trickler, W.J. and Miller, D.W. (2003) Use of osmotic agents in microdialysis studies to improve the recovery of macromolecules. J. Pharm. Sci. 92, 1419–1427.

    Article  PubMed  CAS  Google Scholar 

  14. Guiard, B.P., David, D.J., Deltheil, T., Chenu, F., Le Maitre, E., Renoir, T., Leroux-Nicollet, I., Sokoloff, P., Lanfumey, L., Hamon, M., Andrews, A.M., Hen, R., and Gardier, A.M. (2008) Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperserotonergic phenotype. Int. J. Neuropsychopharmacol. 11, 79–92.

    PubMed  CAS  Google Scholar 

  15. Pettersson, A., Amirkhani, A., Arvidsson, B., Markides, K., and Bergquist, J. (2004) A feasibility study of solid supported enhanced microdialysis. Anal. Chem. 76, 1678–1682.

    Article  PubMed  CAS  Google Scholar 

  16. Andren, P.E. and Caprioli, R.M. (1999) Determination of extracellular release of neurotensin in discrete rat brain regions utilizing in vivo microdialysis/electrospray mass spectrometry. Brain Res. 845, 123–129.

    Article  PubMed  CAS  Google Scholar 

  17. Bengtsson, J., Jansson, B., and Hammarlund-Udenaes, M. (2005) On-line desalting and determination of morphine, morphine-3-glucuronide and morphine-6-glucuronide in microdialysis and plasma samples using column switching and liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19, 2116–2122.

    Article  PubMed  CAS  Google Scholar 

  18. Jakubowski, J.A., Hatcher, N.G., and Sweedler, J.V. (2005) Online microdialysis-dynamic nanoelectrospray ionization-mass spectrometry for monitoring neuropeptide secretion. J. Mass Spectrom. 40, 924–931.

    Article  PubMed  CAS  Google Scholar 

  19. Lanckmans, K., Stragier, B., Sarre, S., Smolders, I., and Michotte, Y. (2007) Nano-LC–MS/MS for the monitoring of angiotensin IV in rat brain microdialysates: limitations and possibilities. J. Sep. Sci. 30, 2217–2224.

    Article  PubMed  CAS  Google Scholar 

  20. Baseski, H.M., Watson, C.J., Cellar, N.A., Shackman, J.G., and Kennedy, R.T. (2005) Capillary liquid chromatography with MS3 for the determination of enkephalins in microdialysis samples from the striatum of anesthetized and freely-moving rats. J. Mass Spectrom. 40, 146–153.

    Article  PubMed  CAS  Google Scholar 

  21. Reed, B., Zhang, Y., Chait, B.T., and Kreek, M.J. (2003) Dynorphin A(1–17) biotransformation in striatum of freely moving rats using microdialysis and matrix-assisted laser desorption/ionization mass spectrometry. J. Neurochem. 86, 815–823.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang, H., Stoeckli, M., Andren, P.E., and Caprioli, R.M. (1999) Combining solid-phase preconcentration, capillary electrophoresis and off-line matrix-assisted laser desorption/ionization mass spectrometry: intracerebral metabolic processing of peptide E in vivo. J. Mass Spectrom. 34, 377–383.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson, S.R., Boix, F., Holm, A., Molander, P., Lundanes, E., and Greibrokk, T. (2005) Determination of bradykinin and arg-bradykinin in rat muscle tissue by microdialysis and capillary column-switching liquid chromatography with mass spectrometric detection. J. Sep. Sci. 28, 1751–1758.

    Article  PubMed  CAS  Google Scholar 

  24. Haskins, W.E., Wang, Z., Watson, C.J., Rostand, R.R., Witowski, S.R., Powell, D.H., and Kennedy, R.T. (2001) Capillary LC–MS2 at the attomole level for monitoring and discovering endogenous peptides in microdialysis samples collected in vivo. Anal. Chem. 73, 5005–5014.

    Article  PubMed  CAS  Google Scholar 

  25. Davies, M.I., Cooper, J.D., Desmond, S.S., Lunte, C.E., and Lunte, S.M. (2000) Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 45, 169–188.

    Article  PubMed  CAS  Google Scholar 

  26. Shackman, H.M., Shou, M., Cellar, N.A., Watson, C.J., and Kennedy, R.T. (2007) Microdialysis coupled on-line to capillary liquid chromatography with tandem mass spectrometry for monitoring acetylcholine in vivo. J. Neurosci. Methods 159, 86–92.

    Article  PubMed  CAS  Google Scholar 

  27. Myasein, K.T., Pulido, J.S., Hatfield, R.M., McCannel, C.A., Dundervill, R.F., 3rd, and Shippy, S.A. (2007) Sub-microlitre dialysis system to enable trace level peptide detection from volume-limited biological samples using MALDI-TOF-MS. Analyst 132, 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  28. Cruz-Bermudez, N.D., Fu, Q., Kutz-Naber, K.K., Christie, A.E., Li, L., and Marder, E. (2006) Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide-like peptide from crabs of the genus Cancer. J. Neurochem. 97, 784–799.

    Article  PubMed  CAS  Google Scholar 

  29. Ma, M., Kutz-Naber, K.K., and Li, L. (2007) Methyl esterification assisted MALDI FTMS characterization of the orcokinin neuropeptide family. Anal. Chem. 79, 673–681.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Craig Berridge (Department of Psychology, University of Wisconsin-Madison) for helpful discussions about microdialysis. This work was supported in part by the School of Pharmacy and the Wisconsin Alumni Research Foundation at the University of Wisconsin-Madison, a National Science Foundation CAREER Award (CHE-0449991), and the National Institutes of Health through Grant 1R01DK071801. L.L. acknowledges an Alfred P. Sloan Research Fellowship. H.L.B. acknowledges the National Institutes of Health Biotechnology Training Grant 5T32 GM08349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi L. Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Behrens, H.L., Li, L. (2010). Monitoring Neuropeptides In Vivo via Microdialysis and Mass Spectrometry. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics