Skip to main content

An Efficient Protocol for DNA Amplification of Multiple Amphibian Skin Antimicrobial Peptide cDNAs

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

Antimicrobial peptides (AMPs) play an important role in the host’s innate defence system in many organisms. Amphibian skin is expected to be a particularly rich source of novel AMPs. In amphibians, AMPs are produced from precursor proteins via specific cleavage by processing enzymes. While the nucleotide sequences of the AMP coding region in precursors are hypervariable, those of other regions, including the 5- and 3-untranslated regions (UTRs), are highly or relatively conserved in different precursors. Such nucleotide sequence conservation suggests an efficient strategy for molecular cloning of the antimicrobial peptide genes by 3-rapid amplification of cDNA ends (3-RACE) and reverse transcriptase polymerase chain reaction (RT-PCR) methods using specific primers. With this strategy in mind we have established an efficient protocol suitable for amplification of multiple cDNAs encoding amphibian AMP precursor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61–92.

    Article  PubMed  CAS  Google Scholar 

  2. Ganz, T. and Lehrer, R. I. (1999) Antibiotic peptides from higher eukaryotes: biology and applications. Mol. Med. Today 5, 292–297.

    Article  PubMed  CAS  Google Scholar 

  3. Hancock, R. E. and Diamond, G. (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410.

    Article  PubMed  CAS  Google Scholar 

  4. Zasloff, M. (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  PubMed  CAS  Google Scholar 

  5. Radek, K. and Gallo, R. (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin. Immunopathol. 29, 27–43.

    Article  PubMed  CAS  Google Scholar 

  6. Nicolas, P., Vanhoye, D. and Amiche, M. (2003) Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24, 1669–1680.

    Article  PubMed  CAS  Google Scholar 

  7. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanated-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  8. Duda, T. F., Jr., Vanhoye, D. and Nicoras, P. (2002) Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol. Biol. Evol. 19, 858–864.

    PubMed  CAS  Google Scholar 

  9. Chen, T., Li, L., Zhou, M., Rao, P., Walker, B. and Shaw, C. (2006) Amphibian skin peptides and their corresponding cDNAs from single lyophilized secretion samples: identification of novel brevinins from three species of Chinese frogs. Peptides 27, 42–48.

    Article  PubMed  Google Scholar 

  10. Chen, T., Zhou, M., Rao, P., Walker, B. and Shaw, C. (2006) The Chinese bamboo leaf odorous frog (Rana (Odorana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides. Peptides 27, 1738–1744.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki, H., Iwamuro, S., Ohnuma, A., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H., Taylor, C. K., Abel, P. W. and Conlon, J. M. (2007) Expression of genes encoding antimicrobial and bradykinin-related peptides in skin of the stream brown frog Rana sakuraii. Peptides 28, 505–514.

    Article  PubMed  CAS  Google Scholar 

  12. Ohnuma, A., Conlon, J. M., Kawasaki, H. and Iwamuro, S. (2006) Developmental and triiodothyronine-induced expression of genes encoding preprotemporins in the skin of Tago’s brown frog Rana tagoi. Gen. Comp. Endocrinol. 146, 242–250.

    Article  PubMed  CAS  Google Scholar 

  13. Ohnuma, A., Conlon, J. M., Yamaguchi, K., Kawasaki, H., Coquet, L., Leprince, J., Jouenne, T., Vaudry, H. and Iwamuro, S. (2007) Antimicrobial peptides from the skin of the Japanese mountain brown frog Rana ornativentris: evidence for polymorphism among preprotemporin mRNAs. Peptides 28, 524–532.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki, H., Conlon, J. M. and Iwamuro, S. (2007) Evidence that the genes encoding the melittin-related peptides in the skins of the Japanese frogs Rana sakuraii and Rana tagoi are not orthologous to bee venom melittin genes: developmental- and tissue-dependent gene expression. Peptides 28, 2061–2068.

    Article  PubMed  CAS  Google Scholar 

  15. Koyama, T. and Iwamuro, S. (2008) Molecular cloning of a cDNA encoding atypical antimicrobial and cytotoxic brevinin-1Ja from the skin of the Japanese brown frog, Rana japonica. Zool. Sci. 25, 487–491.

    Article  PubMed  CAS  Google Scholar 

  16. Reilly, D. S., Tomassini, N. and Zasloff, M. (1994) Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone. Dev. Biol. 162, 123–133.

    Article  PubMed  CAS  Google Scholar 

  17. Kim, J. B., Iwamuro, S., Knoop, F. C. and Conlon, J. M. (2001) Antimicrobial peptides from the skin of the Japanese mountain brown frog, Rana ornativentris. J. Peptide Res. 58, 349–356.

    Article  CAS  Google Scholar 

  18. Barchiesi, F., Colombo, A. L., McGough, D. A. and Rinaldi, M. G. (1994) Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards’ proposed standards. J. Clin. Microbiol. 32, 2494–2500.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the members in the laboratory of Regulatory Biology in Toho University for their useful suggestions for the preparation of the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research (19570063) from the Japan Society for the Promotion of Science to S.I. and T.K.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iwamuro, S., Kobayashi, T. (2010). An Efficient Protocol for DNA Amplification of Multiple Amphibian Skin Antimicrobial Peptide cDNAs. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics