Skip to main content

Peptidomics: Divide et Impera

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

The term “peptidomics” can be defined as the systematic analysis of the peptide content within a cell, organelle, tissue or organism. The science of peptidomics usually refers to the studies of naturally occurring peptides. Another meaning refers to the peptidomics approach to protein analysis. An ancient Roman strategy divide et impera (divide and conquer) reflects the essence of peptidomics. Most effort in this field is spent purifying and dividing the peptidomes, which consist of tens, hundreds or sometimes thousands of functional peptides, followed by their structural and functional characterisation. This chapter introduces the concept of peptidomics, outlines the range of methodologies employed and describes key targets – the peptide groups which are often sought after in such studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chervet, J.P., Ursem, M., and Salzmann, J.B. (1996) Instrumental requirements for nanoscale liquid chromatography. Anal. Chem. 68, 1507–1512.

    Article  PubMed  CAS  Google Scholar 

  2. Quadroni, M. and James, P. (1999) Proteomics and automation. Electrophoresis 20, 664–677.

    Article  PubMed  CAS  Google Scholar 

  3. Schrader, M. and Schulz-Knappe, P. (2001) Peptidomics technologies for human body fluids. Trends Biotechnol. 19, S55–S60.

    Article  PubMed  CAS  Google Scholar 

  4. Verhaert, P., Vandesande, F., and De Loof, A. (1999) Automated analysis of the peptidome. No longer science fiction. In: 2nd International Seminar on the Enabling Role of MS in Manchester.

    Google Scholar 

  5. Verhaert, P., Uttenweiler-Joseph, S., de Vries, M., Loboda, A., Ens, W., and Standing, K.G. (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1, 118–131.

    Article  PubMed  CAS  Google Scholar 

  6. Schulz-Knappe, P., Zucht, H.D., Heine, G., Jürgens, M., Hess, R., and Schrader, M. (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen 4, 207–217.

    PubMed  CAS  Google Scholar 

  7. Clynen, E., Baggerman, G., Veelaert, D., Cerstiaens, A., Van der Horst, D., Harthoorn, L., Derua, R., Waelkens, E., De Loof, A., and Schoofs, L. (2001) Peptidomics of the pars intercerebralis–corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur. J. Biochem. 268, 1929–1939.

    Article  PubMed  CAS  Google Scholar 

  8. Scrivener, E., Barry, R., Platt, A., Calvert, R., Masih, G., Hextall, P., Soloviev, M., and Terrett, J. (2003) Peptidomics: a new approach to affinity protein microarrays. Proteomics 3, 122–128.

    Article  PubMed  CAS  Google Scholar 

  9. Barry, R., Diggle, T., Terrett, J., and Soloviev, M. (2003) Competitive assay formats for high-throughput affinity arrays. J. Biomol. Screen. 8, 257–263.

    Article  PubMed  CAS  Google Scholar 

  10. Barry, R. and Soloviev, M. (2004) Quantitative protein profiling using antibody arrays. Proteomics 4, 3717–3726.

    Article  PubMed  CAS  Google Scholar 

  11. Community Trade Mark No. 001274646; http://oami.europa.eu

  12. Marko-Varga, G., Nilsson, J., and Laurell, T. (2003) New directions of miniaturization within the proteomics research area. Electrophoresis 24, 3521–3532.

    Article  PubMed  CAS  Google Scholar 

  13. Hoa, X.D., Kirk, A.G., and Tabrizian, M. (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151–160.

    Article  PubMed  CAS  Google Scholar 

  14. Kurosawa, S., Aizawa, H., Tozuka, M., Nakamura, M., and Park, J.W. (2003) Immunosensors using a quartz crystal microbalance. Meas. Sci. Technol. 14, 1882–1887.

    Article  CAS  Google Scholar 

  15. Lion, N., Rohner, T.C., Dayon, L., Arnaud, I.L., Damoc, E., Youhnovski, N., Wu, Z.Y., Roussel, C., Josserand, J., Jensen, H., Rossier, J.S., Przybylski, M., and Girault, H.H. (2003) Microfluidic systems in proteomics. Electrophoresis 24, 3533–3562.

    Article  PubMed  CAS  Google Scholar 

  16. Lion, N., Reymond, F., Girault, H.H., and Rossier, J.S. (2004) Why the move to microfluidics for protein analysis?. Curr. Opin. Biotechnol. 15, 31–37.

    Article  PubMed  CAS  Google Scholar 

  17. Soloviev, M. and Finch, P. (2005) Peptidomics, current status. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 815, 11–24.

    Article  PubMed  CAS  Google Scholar 

  18. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  19. DeSouza, L., Diehl, G., Rodrigues, M.J., Guo, J., Romaschin, A.D., Colgan, T.J., and Siu, K.W. (2005) Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J. Proteome Res. 4, 377–386.

    Article  PubMed  CAS  Google Scholar 

  20. Soloviev, M., Barry, R., Scrivener, E., and Terrett, J. (2003) Combinatorial peptidomics: a generic approach for protein expression profiling. J. Nanobiotechnol. 1, 4.

    Article  Google Scholar 

  21. Rash, L.D. and Hodgson, W.C. (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40, 225–254.

    Article  PubMed  CAS  Google Scholar 

  22. Perumal, J., Filippi, M., Ford, C., Johnson, K., Lisak, R., Metz, L., Tselis, A., Tullman, M., and Khan, O. (2006) Glatiramer acetate therapy for multiple sclerosis: a review. Expert Opin. Drug Metab. Toxicol. 2, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  23. Adermann, K., John, H., Ständker, L., and Forssmann, W.G. (2004) Exploiting natural peptide diversity: novel research tools and drug leads. Curr. Opin. Biotechnol. 15, 599–606.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmerman, L.J., Wernke, G.R., Caprioli, R.M., and Liebler, D.C. (2005) Identification of protein fragments as pattern features in MALDI-MS analyses of serum. J. Proteome Res. 4, 1672–1680.

    Article  PubMed  CAS  Google Scholar 

  25. Vidal, B.C., Bonventre, J.V., and I-Hong Hsu, S. (2005) Towards the application of proteomics in renal disease diagnosis. Clin. Sci. (Lond). 109, 421–430.

    Article  CAS  Google Scholar 

  26. Desjardins, M., Houde, M., and Gagnon, E. (2005) Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol. Rev. 207, 158–165.

    Article  PubMed  CAS  Google Scholar 

  27. Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R., and Wearsch, P.A. (2005) Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157.

    Article  PubMed  CAS  Google Scholar 

  28. Van der Merwe, P.A. and Davis, S.J. (2003) Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684.

    Article  PubMed  Google Scholar 

  29. Metzger, J., Schanstra, J.P., and Mischak, H. (2009) Capillary electrophoresis-mass spectrometry in urinary proteome analysis: current applications and future developments. Anal. Bioanal. Chem. 393, 1431–1442.

    Article  PubMed  CAS  Google Scholar 

  30. Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., and Erspamer, V. (2002) The tachykinin peptide family. Pharmacol. Rev. 54, 285–322.

    Article  PubMed  CAS  Google Scholar 

  31. Miller, M.B. and Bassler, B.L. (2001) Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199.

    Article  PubMed  CAS  Google Scholar 

  32. Gibbs, R.A. (2005) Trp modification signals a quorum. Nat. Chem. Biol. 1, 7–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kalkum, M., Lyon, G.J., and Chait, B.T. (2003) Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc. Natl. Acad. Sci. USA. 100, 2795–2800.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Soloviev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Soloviev, M. (2010). Peptidomics: Divide et Impera. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics