Skip to main content

Lentiviral Vector Engineering for Anti-HIV RNAi Gene Therapy

  • Protocol
  • First Online:
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

RNA interference or RNAi-based gene therapy for the treatment of HIV-1 infection has recently emerged as a highly effective antiviral approach. The lentiviral vector system is a good candidate for the expression of antiviral short hairpin RNAs (shRNA) in HIV-susceptible cells. However, this strategy can give rise to vector problems because the anti-HIV shRNAs can also target the HIV-based lentiviral vector system. In addition, there may be self-targeting of the shRNA-encoding sequences within the vector RNA genome in the producer cell. The insertion of microRNA (miRNA) cassettes in the vector may introduce Drosha cleavage sites that will also result in the destruction of the vector genome during the production and/or the transduction process. Here, we describe possible solutions to these lentiviral-RNAi problems. We also describe a strategy for multiple shRNA expression to establish a combinatorial RNAi therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grimm, D., and Kay, M.A. (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15, 878-88.

    PubMed  CAS  Google Scholar 

  2. Liu, Y.P., and Berkhout, B. (2008) Combinatorial RNAi strategies against HIV-1 and other escape-prone viruses. Int J Biosci Technol 1, 1-10.

    Google Scholar 

  3. Anderson, J., Li, M.J., Palmer, B. et al. (2007) Safety and efficacy of a lentiviral vector containing three anti-HIV genes-CCR5 ribozyme, tat-rev siRNA, and TAR decoy-in SCID-hu mouse-derived T cells. Mol Ther 14, 1182-8.

    Google Scholar 

  4. Henry, S.D., van der Wegen, P., Metselaar, H.J., Tilanus, H.W., Scholte, B.J., and van der Laan, L.J. (2006) Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes. Mol Ther 14, 485-93.

    Article  PubMed  CAS  Google Scholar 

  5. Ter Brake, O., ‘t Hooft, K., Liu, Y.P., Centlivre, M., von Eije, K.J., and Berkhout, B. (2008) Lentiviral vector design for multiple shRNA expression and durable HIV-1 Inhibition. Mol Ther 16, 557-64.

    Article  PubMed  Google Scholar 

  6. Song, J., Pang, S., Lu, Y., and Chiu, R. (2004) Poly(U) and polyadenylation termination signals are interchangeable for terminating the expression of shRNA from a pol II promoter. Biochem Biophys Res Commun 323, 573-8.

    Article  PubMed  CAS  Google Scholar 

  7. Braun, S.E., Shi, X., Qiu, G., Wong, F.E., Joshi, P.J., and Prasad, V.R. (2007) Instability of retroviral vectors with HIV-1-specific RT aptamers due to cryptic splice sites in the U6 promoter. AIDS Res Ther 4, 24.

    Article  PubMed  Google Scholar 

  8. Mitta, B., Rimann, M., and Fussenegger, M. (2005) Detailed design and comparative analysis of protocols for optimized production of high-performance HIV-1-derived lentiviral particles. Metab Eng 7, 426-36.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar, M., Keller, B., Makalou, N., and Sutton, R.E. (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12, 1893-905.

    Article  PubMed  CAS  Google Scholar 

  10. Ter Brake, O., and Berkhout, B. (2007) Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions. J Gene Med 9, 743-50.

    Article  PubMed  Google Scholar 

  11. Ter Brake, O., Konstantinova, P., Ceylan, M., and Berkhout, B. (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14, 883-92.

    Article  PubMed  Google Scholar 

  12. Westerhout, E.M., and Berkhout, B. (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35, 4322-30.

    Article  PubMed  CAS  Google Scholar 

  13. Seppen, J., Rijnberg, M., Cooreman, M.P., and Oude Elferink, R.P. (2002) Lentiviral vectors for efficient transduction of isolated primary quiescent hepatocytes. J Hepatol 36, 459-65.

    Article  PubMed  CAS  Google Scholar 

  14. Brummelkamp, T.R., Bernards, R., and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-3.

    Article  PubMed  CAS  Google Scholar 

  15. Yu, J.Y., DeRuiter, S.L., and Turner, D.L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99, 6047-52.

    Article  PubMed  CAS  Google Scholar 

  16. Koper-Emde, D., Herrmann, L., Sandrock, B., and Benecke, B.J. (2004) RNA interference by small hairpin RNAs synthesised under control of the human 7SK RNA promoter. Biol Chem 385, 791-4.

    Article  PubMed  CAS  Google Scholar 

  17. Denti, M.A., Rosa, A., Sthandier, O., De Angelis, F.G., and Bozzoni, I. (2004) A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol Ther 10, 191-9.

    Article  PubMed  CAS  Google Scholar 

  18. Dull, T., Zufferey, R., Kelly, M. et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72, 8463-71.

    PubMed  CAS  Google Scholar 

  19. Kotsopoulou, E., Kim, V.N., Kingsman, A.J., Kingsman, S.M., and Mitrophanous, K.A. (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74, 4839-52.

    Article  PubMed  CAS  Google Scholar 

  20. Andersson, M.G., Haasnoot, P.C.J, Xu, N., Berenjian, S., Berkhout, B., and Akusjarvi, G. (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79, 9556-65.

    Article  PubMed  CAS  Google Scholar 

  21. de Vries, W, Haasnoot, J., van der Velden, J. et al. (2008) Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene Ther 15, 545-52.

    Article  PubMed  Google Scholar 

  22. Cambi, A., Gijzen, K., de Vries, J.M. et al. (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33, 532-8.

    Article  PubMed  CAS  Google Scholar 

  23. Haasnoot, J., de Vries, W., Geutjes, E.J., Prins, M., de Haan, P., and Berkhout, B. (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3, e86.

    Article  Google Scholar 

  24. Popa, I., Harris, M.E., Donello, J.E., and Hope, T.J. (2002) CRM1-dependent function of a cis-acting RNA export element. Mol Cell Biol 22, 2057-67.

    Article  PubMed  CAS  Google Scholar 

  25. Liu Y.P., Haasnoot, J., and Berkhout, B. (2007) Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res 35, 5683-93.

    Google Scholar 

Download references

Acknowledgments

RNAi research in the Berkhout laboratory is sponsored by ZonMw (VICI and Translational gene therapy grant) and NWO-Chemical Sciences (TOP grant). We thank Stef Heynen for the CA-p24 protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Berkhout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

ter Brake, O., Westerink, JT., Berkhout, B. (2010). Lentiviral Vector Engineering for Anti-HIV RNAi Gene Therapy. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics